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ABSTRACT
A fuzzy controller designed by mini-max-

gravity(MMG) method is essentially nonlinear with
respect to the controller's input and output rela-
tionship, and stability analysis is thus needed to
construct a stable control system. This paper
deals with a design method of a position-type MMG
fuzzy controller stable In a sense of Lyapunov
when considered is a single-input-single-output
linear, stable plant. We first introduce a method to
construct a Lyapunov function by using an eigen-
value of A matrix of the linear, stable plant
dynamics and then we derive an asymptotic stabil-
ity condition in terms of scale factors for fuzzy
state variables and controller gain. The stability
condition is found reasonably practical through
comparing the theoretical stability region with that
obtained from simulations.

1. Introduction

One of the most Important and fundamental
concepts concerning the dynamic characteristics of
fuzzy control system is stability; and because of a
strong nonlinearity in the Input-output relation-
ship of fuzzy controller, few works have been
done in investigating the dynamic stability condi-
tion of fuzzy control system. Kitamura[l] investi-
gated the dynamic stability condition by applying
the circle criterion to a position-type fuzzy con-
trol system; Tanaka and Sugeno[2], Tanaka and
Sano[3] showed a stability condition to a special
fuzzy control system constructed by weighted sum
of linear-stable subsystems with an algebric-
product-sum inference scheme controller. Maeda
and his colleagues[4] proposed a method to inves-
tigate the stability of both position and velocity
type fuzzy control systems by introducing two
parameters for linear approximation of a fuzzy
controller input-output relationship. Recently Hara
and Ishibe[5] showed a counterexample to the
stability conjecture derived by Maeda and et al[4]
and showed the existence condition of limit cycle
oscillation In the velocity-type, MMG fuzzy control
system.

This paper discusses the determination of
scale factors of a position-type, MMG fuzzy con-
troller for ensuring the asymptotic stability of the
fuzzy control system in Lyapunov sense. This
paper shows how to construct the Lyapunov func-
tion of the fuzzy feedback control system and
verifies the proposed method with comparing the
analytical result with that obtalned from numerical
simulations.

2. Fuzzy Control System

Plant Dynamics

Let us assume the plant to be considered is
linear and stable, and its dynamics is, for simplici-
ty, represented by a 2nd order state vector
equation

x=Ax+Bu , y=CTx M

where x=state vector, u=fuzzy control input,
y=observed output and matrix A, B and C are
assumed as

0 1
A=

2 -3
When the sampling interval t is designated as

unit time step for discrete form of eq.(1), eq.(1) is
rewritten In the form
(3)

x(t+1) = Dx(1) + Wu(t)

where ® is a transition matrix defined as exp(At)
and ¥=(exp(Ar-DA?

For a position-type fuzzy controller, the
control input u(t) is written as
ut) =u C))

where u = output of a position-type fuzzy control-
ler.

When we Introduce three scale factors Kp, Kv,
and Ku to the fuzzy controller f, u is written as

u=KU°f(kT° e)
k=[ L _1 17
Kp, Kv

e=[e 1'=
=l¢,, ¢, ] =x5-x, x, =target vector ,

®

Fuzzy Control

The basic membership functions for the fuzzy
labels to be used in this paper NB(Negative Big),
NM(Negative Medium), NS(Negative Small), ZO(Zero),
PS(Positive Small), PM(Positive Medium), and
PB(Positive Big) are defined on the support [ -6,
6 ] as shown In Fig.l, and are used to specify the
range of each of fuzzy variables such as dis-
placement e, velocity e. and control gain after
introducing scale factors Kp, Kv and XKu for each
of them respectively. The fuzzy control rules to
be used are shown in Fig.2 and the control plane
generated by the mini-max-gravity(MMG) center
method is, for example, shown In Fig.3 for the
case of three scale factor Kp=10, Kv=10 and Ku=10.
If we obtain the value e at time step t, then the
output of the position-type fuzzy controller u in
eq.(5) is simply determined by using a control
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Fig.3 Fuzzy control map in terms of e, and e.

Kp=10 Kv=10 Ku=10

plane for the case of given scale factors Kp, Kv
and Ku.

3. Stability Analysis

Lyapunov Function

Since the position-type fuzzy controller
specifies its output um by position error e, and
velocity error e. as shown in Fig.2, eq.(2) must
be rewritten in terms of error vector e(t)=(ep,
ev)T

e(t) = xq- x(t) (6)
Le.,

e(t+1) = D e(t) - ¥ v(t) @)

v=u-B'Ax,

Note here that v is determined by the fuzzy
control plane as v=um. From eqs.(5) and (7), the
error vector dynamics is written in the form

e(t+1) = g(e(t)) , (8)

g = nonlinear vector function

Designating one eigenvalue of the matrix A in
eq.(1) as A, we introduce the following function V
for the dynamic system (eq.(8))

V={-heft)+eft) Y 9)
and investigate its property in a view of the
Lyapunov function.

(1) From the property of mini-max-gravity center
inference scheme employed in determining the
fuzzy controller output u, it is easily found that

u =0 for efty=eft)=0. (10)

Thus the function V can satisfy the condition for
any t

V(e®)=0)=0  when e(t)=0. 1y
(2) It is easily found from the definition eq.(9)

V(e()) > 0 for e(t)=0 (12)

V(e®) =« for [le® ]} = (13)

(3) Replacing the value -1 by p in general, and
rewriting eq.(7) in the following form

1 AL A B
[:ﬁ:lg]{fx; Ai] [2;’8] - [B;] u (14

then
AV = V(e(t+1)) - V(e(t))
= {(pB: + Bu(t) + (pA1+ Aa + pledt)
+ (pAz+ As+ eft)} x
{(pB1+ B2)u(t) + (pA1+ As- pegt)
+ (pAz+ Ad- Dedt)} (15)
As AV is a quadratic form of u(t), AV be-
comes negative if the discriminant D of eq.(15)

D = 4(pB1 + B2 (pex(t) + ex(t))’ (16)
is positive and
ui<u <uz 17

where u. and us; are the two real roots of the
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equation

AV=0. (18)
Thus it is easily derived that, as shown in Fig.4,

AV<0 for (19)

Stability Condition in Terms of Scale Factors

When the discriminant D s positive, AV
becomes negative for the point ( ep, e+, u )
included within the region covered by the two
planes (say Lyapunov planes, Fig.5)

(pPB1+ By)u + (pAi + A3+ p)e,
+(phAz+ As+ 1ev=0

(PB1+ Byu + (pA;+ Aj- plep
+ (pA2+A4- l)ev= 0
This condition is completely equivalent to eq.(19).
The intersection between the two Lyapunov planes

(eq.(20)) is easily obtained from eq.(20) and speci-
fied by

pepte, =0, u=0 .

ui<u <ujz,

(20)

1)
since the discriminant eq.(16) becomes zero for the
condition peptev=0, and the degenerate root of
AV=0 is u=0 due to the property of Ai, Az, As
and Aa.

From the fuzzy control map generated by the

fuzzy control rules shown in Fig.2, it is found
that
u=0 for Kve,+Kpe,=0. (22)

When the Intersection of the Lyapunov planes
coincides with the line specified by eq.(22), the
fuzzy control system becomes asymptotically stable
if the fuzzy control plane u = Ku-f(K™
cluded within the region covered by the two

av

u uy u(t)

5

establep

— - —
- ———

Fig.4 Increment of Lyapunov function AV

against control u

Lyapunov planes. Then from egs.(21) and (22),
Kve,+Kpev=pey+e =0
Kv = pKp = -AKp
The Lyapunov plane with a larger inclination

is easily found and is represented by eq.(24)
when p is replaced by -i:

_ M A . A2+ At ] .
T TAB1+B2z ©  -ABi+B:

Let's consider a tangential plane to the fuzzy
control plane u = Ku-f(K* -e) and express it by
the following equation

(23)

v (24)

Ku Ku
u= o—=ep+ & €v 25
Kp p Kv ( )
where a 1is the tangential to the nominal fuzzy

control plane (Kp=Kv=Ku=1). The Lyapunov plane
eq.(24) can cover the fuzzy control plane if the
following condition is satisfied:

Ku -AA+ As-A
o € —
Kp -AB:+ B, 26
aKu SAAL+ A+ (26)
Kv -AB.+B:

From the above discussions, the scale factors
Kp, Kv and Ku must be selected to satisfy the
conditions shown in eqs.(23) and (26) for ensuring
the dynamic stability of the position-type MMG
fuzzy control system.

4. Simulation Study
The validity of the stability conditions

(eqs.(23) and (26)) derlved in terms of scale fac-
tors Kp, Kv and Ku, numerical simulation was

-e) Is in- carried out for the following conditions:

Dynamic equation
Initial condition

: eq.(3)
: x(0)=[0,0]™,

©p

Fig.5 Lyapunov planes in space (ep,, e., u)
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Simulation results are shown in Fig.6 for A=-
2, In which open circles mean that the fuzzy
control system is unstable in numerical simulation
and the solld line corresponds to the condition
discribed by eq.(26) under the relationship

KN’:-)J(p

This figure clearly shows that the stability
conditions we have derived in this paper are
sufficient for ensuring the fuzzy control system to
be stable.

Fig.7 is the distribution of unstable scale
factor point (Kv, Ku) obtained by numerical simu-
lation for another eigenvalue A =-1. The solid line
in this figure is also correspondent to the stabili-

et e ty boundary obtained by eq.(26) and the condition

10 15 20 Kv=Kp. The unstable scale factor points (Kv, Ku)
Scale factor Ky locate fairly far outside the stable region obtained
by eq.(26) in both Figs.6 and 7.
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Fig.6 Stability region determined by Lyapunov
method in terms of Ku and Kv (solld line)
and unstable fuzzy control systems
specified by scale factors Kv and Ku for
A==2

5. Conclusions

This paper has shown the stability condition,
in Lyapunov sense, of position-type MMG fuzzy
control system and derived the conditions to be
satisfied by scale factors Kp, Kv and Ku for
ensuring the stability of our fuzzy control system.
The conditions were also verified by numerical
simulations.
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and unstable fuzzy control systems

specified by scale factors Kv and Ku for
A=-1
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