• Title/Summary/Keyword: continuum theory

Search Result 228, Processing Time 0.023 seconds

Study on the Free Surface Behavior Using the Lattice Boltzmann Method (격자볼츠만법을 이용한 자유수면 거동 특성 연구)

  • Jung, Rho-Taek
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.4
    • /
    • pp.255-262
    • /
    • 2013
  • The boltzmann equation is based on the particle distribution function while the Navire-Stokes equation based on the continuum theory. In order to simulate free surface flow, this paper used the Lattice Boltzmann Method of which is the discretized form. The detail study on the characteristics of the Lattice Boltzmann Method for the free surface simulation was investigated. The developed code was validated with the traditional dam breaking problem by tracking the front position of the water. A basic roles of density functions in the Lattice Boltzmann Method is discussed. To have an engineering applications, the simulation is also conducted the free surface behavior with an arbitrary wall geometry.

Localized Plastic Deformation in Plastic Strain Gradient Incorporated Combined Two-Back Stress Hardening Model (변형량 기울기 이론이 조합된 이중후방응력 경화모델에서의 국부적 소성변형)

  • Yun, Su-Jin;Lee, Sang-Youn;Park, Dong-Chang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.528-535
    • /
    • 2011
  • In the present, the formation of shear band under a simple shear deformation is investigated using a rate-independent elastic-plastic constitutive relations. Moreover, the strain gradient terms are incorporated to obtain a non-local plastic constitutive relation, which in turn represented using combined two-back stress hardening model. Then, the continuum damage model is also included to the proposed model. The post-localization behavior are studied by introducing a small imperfection in a work piece. The strain gradient affects the shear localization significantly such that the intensity of shear band decreases as the strain gradient coefficient increases when the J2 flow theory is employed.

  • PDF

Theoretical and experimental study of robustness based design of single-layer grid structures

  • Wu, Hui;Zhang, Cheng;Gao, Bo-Qing;Ye, Jun
    • Structural Engineering and Mechanics
    • /
    • v.52 no.1
    • /
    • pp.19-33
    • /
    • 2014
  • Structural robustness refers to the ability of a structure to avoid disproportionate consequences to the original cause. Currently attentions focus on the concepts of structural robustness, and discussions on methods of robustness based structural design are rare. Firstly, taking basis in robust $H_{\infty}$ control theory, structural robustness is assessed by $H_{\infty}$ norm of the system transfer function. Then using the SIMP material model, robustness based design of grid structures is formulated as a continuum topology optimization problem, where the relative density of each element and structural robustness are considered as the design variable and the optimization objective respectively. Generalized elitist genetic algorithm is used to solve the optimization problem. As examples, robustness configurations of plane stress model and the rectangular hyperbolic shell model were obtained by robustness based structural design. Finally, two models of single-layer grid structures were designed by conventional and robustness based method respectively. Different interference scenarios were simulated by static and impact experiments, and robustness of the models were analyzed and compared. The results show that the $H_{\infty}$ structural robustness index can indicate whether the structural response is proportional to the original cause. Robustness based structural design improves structural robustness effectively, and it can provide a conceptual design in the initial stage of structural design.

A Multi-wavelength Study of a Pair of Interacting BCDs: ESO 435-IG20 and ESO 435-IG16

  • Kim, Jinhyub;Chung, Aeree;Sung, Eon-Chang;Staveley-Smtih, Lister
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.49-49
    • /
    • 2014
  • Blue Compact Dwarf galaxies (BCDs) are low-mass galaxies with recently enhanced star formation activity. Since the discovery of old stellar population in the BCDs, a number of hypotheses have been suggested as the origin of the current active star formation. One theory is tidal interactions such as fly-by and merger. In this study we test this hypothesis using a pair of BCDs, ESO 435-IG20 and ESO 435-IG16 that are separate by only ~80 kpc in projection at a similar redshift (at a ~9 Mpc distance). In the HIPASS survey, intergalactic atomic hydrogen envelope has been found to be covering both galaxies, making the pair a good candidate for the case where the star formation has been triggered by tidal interaction. We probe the gas morphology and kinematics of the BCD pair using ATCA HI data in order to find the evidence of tidal interaction. We also estimate star formation rates in the pair based on Ha emission and UV continuum, and compare with other dwarf galaxies to investigate how responsible the tidal interaction is for the enhanced star formation in this case.

  • PDF

Experimental and Computational Approaches to the Molecular Structure of 3-(2-Mercaptopyridine)phthalonitrile

  • Tanak, Hasan;Koysal, Yavuz;Isik, Samil;Yaman, Hanifi;Ahsen, Vefa
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.673-680
    • /
    • 2011
  • The compound 3-(2-Mercaptopyridine)phthalonitrile has been synthesized and characterized by IR, UV-vis, and X-ray single-crystal determination. The molecular geometry from X-ray determination of the title compound in the ground state has been compared using the Hartree-Fock (HF) and density functional theory (DFT) with the 6-31G(d) basis set. The calculated results show that the DFT and HF can well reproduce the structure of the title compound. The energetic behavior of the title compound in solvent media was examined using the B3LYP method with the 6-31G(d) basis set by applying the Onsager and polarizable continuum model. Using the TD-DFT and TD-HF methods, electronic absorption spectra of the title compound have been predicted and good agreement with the TD-DFT method and the experimental determination was found. The predicted nonlinear optical properties of the title compound are much greater than those of urea. Besides, molecular electrostatic potential of the title compound were investigated by theoretical calculations. The thermodynamic properties of the compound at different temperatures have been calculated and corresponding relations between the properties and temperature have also been obtained.

Dynamic Analysis of a Very Flexible Cable Carrying A Moving Multibody System (다물체 시스템이 이동하는 유연한 케이블의 동역학 해석에 관한 연구)

  • 서종휘;정일호;한형석;박태원
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.2
    • /
    • pp.150-156
    • /
    • 2004
  • In this paper, the dynamic behavior of a very flexible cable due to moving multibody system along its length is presented. The very deformable motion of a cable is presented using absolute nodal coordinate formulation, which is based on the finite element procedures and the general continuum mechanics theory to represent the elastic forces. Formulation for the sliding joint between a very flexible beam and a rigid body is derived. In order to formulate the constraint equations of this joint, a non-generalized coordinate, which has no inertia or forces associated with this coordinate, is used. The modeling of this sliding joint is very important to many mechanical applications such as the ski lifts. cable cars, and pulley systems. A multibody system moves along an elastic cable using this sliding joint. A numerical example is shownusing the developed analysis program for flexible multibody systems that include a large deformable cable.

The Development of a Sliding Joint for Very Flexible Multibody Dynamics (탄성 대변형 다물체동역학을 위한 슬라이딩조인트 개발)

  • Seo Jong-Hwi;Jung Il-Ho;Sugiyama Hiroyuki;Shabana Ahmed A.;Park Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.8 s.239
    • /
    • pp.1123-1131
    • /
    • 2005
  • In this paper, a formulation for a spatial sliding joint, which a general multibody can move along a very flexible cable, is derived using absolute nodal coordinates and non-generalized coordinate. The large deformable motion of a spatial cable is presented using absolute nodal coordinate formulation, which is based on the finite element procedures and the general continuum mechanics theory to represent the elastic forces. And the non-generalized coordinate, which is neither related to the inertia forces nor external forces, is used to describe an arbitrary position along the centerline of a very flexible cable. In the constraint equation for the sliding joint, since three constraint equations are imposed and one non-generalized coordinate is introduced, one constraint equation is systematically eliminated. Therefore, there are two independent Lagrange multipliers in the final system equations of motion associated with the sliding joint. The development of this sliding joint is important to analyze many mechanical systems such as pulley systems and pantograph/catenary systems for high speed-trains.

Behavior of circular thin-walled steel tube confined concrete stub columns

  • Ding, Fa-xing;Tan, Liu;Liu, Xue-mei;Wang, Liping
    • Steel and Composite Structures
    • /
    • v.23 no.2
    • /
    • pp.229-238
    • /
    • 2017
  • This paper presents a combined numerical and theoretical study on the composite action between steel and concrete of circular steel tube confined concrete (STCC) stub columns under axial compressive loading with a full theoretical elasto-plastic model and finite element (FE) model in comparison with experimental results. Based on continuum mechanics, the elasto-plastic model for STCC stub columns was established and the analysis was realized by a FORTRAN program and the three dimensional FE model was developed using ABAQUS. The steel ratio of the circular STCC columns were defined in range of 0.5% to 2% to analyze the composite action between steel tube and concrete, and make a further study on the advantages of the circular STCC columns. By comparing the results using the elasto-plastic methods with the parametric analysis result of FE model, the appropriate friction coefficient between the steel tube and core concrete was defined as 0.4 to 0.6. Based on ultimate balance theory, the formula of ultimate load capacity applying to the circular STCC stub columns was developed.

Creep Deformation Characteristics of Polycrystalline Ice and its Numerical Simulation in the Flow of Polar Glaciers (극지 빙하유동에 있어서 Polycrystalline Ice의 Creep 변형특성 수치 시뮬레이션)

  • 최경식
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.2 no.2
    • /
    • pp.59-66
    • /
    • 1990
  • Various types of ice distribution under low temperature greatly influence the environment of the Arctic and Antarctic Oceans. To understand fundamentals of ice properties such as Polar glaciers, icebergs and sea ice, this study focuses on the material behaviors and failure mechanisms of polycrystalline ice. Utilizing the continuum damage theory, a three-dimensional constitutive model to describe creep deformation characteristics in the glacial flow is developed in consideration of micro-cracking as the major physical process of ice deformation. The numerical model is compared with the published experimental data especially in uniaxial constant stress creep tests. The model can simulate primary and secondary creeps as well as tertiary creep characteristics due to the microcrack accumulation.

  • PDF

Finite Element Analysis for Plastic Large Deformation and Anisotropic Damage (소성 대변형 및 이방성 손상의 유한요소해석)

  • I.S. Nho;S.J. Yim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.1
    • /
    • pp.145-156
    • /
    • 1993
  • An improved analysis model for material nonlinearity induced by elasto-plastic deformation and damage including large strain response was proposed. The elasto-plastic-damage constitutive model based on the continuum damage mechanics approach was adopted to overcome limitations of the conventional plastic theory, which can manage the anisotropic tonsorial damages evolved during time-independent plastic deformation process of materials. Updated Lagrangian finite element formulation for elasto-plastic damage coupling problem including large deformation, large rotation and large strain problems was completed to develop a numerical model which can predict all kinds of structural nonlinearities and damage rationally. Finally, a finite element analysis code for the 2-dimensional plane problem was developed and the applicability and validity of the numerical model was investigated through some numerial examples. Calculations showed reasonable results in both geometrical nonlinear problem due to large deformation and material nonlinearity including the damage effect.

  • PDF