• Title/Summary/Keyword: continuum elements

Search Result 113, Processing Time 0.02 seconds

A Study on Application of Fractal Dimension in Analysis of Damage Mechanics in Rock (암반의 손상역학 해석에 있어서 Fractal차원의 적용에 관한 연구)

  • 정교철;정영기
    • The Journal of Engineering Geology
    • /
    • v.4 no.2
    • /
    • pp.139-151
    • /
    • 1994
  • Rocks are composed of the discrete elements of microstructures such as different grains and microcracks. The studies of these microstructures are of increasing interest in engineering geology and civil engineering related to construction of a deep under-ground space. Accordingly, instead of a simplified continuum approach, discrete structural elements and mechanical properties of various grains must be accounted. But it is difficult to analyse crack and discontinuity surfaces in Euclidean geometry. So, Mandelbrot( 1983) developed fractal theory to manage irregular body in nature. In this study, geometrical properties of microstructures to estimate a relation between crack propagation and stress were calculated. Then it is shown that fractal theory can be applied to research real mechanical behavior of rocks.

  • PDF

The use of eccentric beam elements in the analysis of slab-on-girder bridges

  • Chan, Tommy H.T.;Chan, Jeffrey H.F.
    • Structural Engineering and Mechanics
    • /
    • v.8 no.1
    • /
    • pp.85-102
    • /
    • 1999
  • With the advent of computer, the finite element method has become a most powerful numerical method for structural analysis. However, bridge designers are reluctant to use it in their designs because of its complex nature and its being time consuming in the preparation of the input data and analyzing the results. This paper describes the development of a computer based finite element model using the idea of eccentric beam elements for the analysis of slab-on-girder bridges. The proposed method is supported by a laboratory test using a reinforced concrete bridge model. Other bridge analytical schemes are also introduced and compared with the proposed method. The main aim of the comparison is to prove the effectiveness of the shell and eccentric beam modelling in the studies of lateral load distribution of slab-on-girder bridges. It is concluded that the proposed finite element method gives a closer to real idealization and its developed computer program, SHECAN, is also very simple to use. It is highly recommended to use it as an analytical tool for the design of slab-on-girder bridges.

Improved Curved Beam Theory for Vibration and Deflection Analyses (진동 및 처짐해석을 위한 개선된 곡선보이론)

  • Kim, Nam-Il;Choi, Jung-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.4
    • /
    • pp.123-132
    • /
    • 2010
  • To overcome the drawback of currently available curved beam theories having non-symmetric thin-walled cross sections, a curved beam theory based on centroid-shear center formulation is presented for the spatially coupled free vibration and elastic analyses. For this, the displacement field is expressed by introducing displacement parameters defined at the centroid and shear center axes, respectively. Next the elastic strain and kinetic energies considering the thickness-curvature effect and the rotary inertia of curved beam are rigorously derived by degenerating the energies of the elastic continuum to those of curved beam. In order to illustrate the validity and the accuracy of this study, FE solutions using the Hermitian curved beam elements are presented and compared with the results by centroid formulation, previous research and ABAQUS's shell elements.

  • PDF

Stress path adapting Strut-and-Tie models in cracked and uncracked R.C. elements

  • Biondini, Fabio;Bontempi, Franco;Malerba, Pier Giorgio
    • Structural Engineering and Mechanics
    • /
    • v.12 no.6
    • /
    • pp.685-698
    • /
    • 2001
  • In this paper, a general method for the automatic search for Strut-and-Tie (S&T) models representative of possible resistant mechanisms in reinforced concrete elements is proposed. The representativeness criterion here adopted is inspired to the principle of minimum strain energy and requires the consistency of the model with a reference stress field. In particular, a highly indeterminate pin-jointed framework of a given layout is generated within the assigned geometry of the concrete element and an optimum truss is found by the minimisation of a suitable objective function. Such a function allows us to search the optimum truss according to a reference stress field deduced through a F.E.A. and assumed as representative of the given continuum. The theoretical principles and the mathematical formulation of the method are firstly explained; the search for a S&T model suitable for the design of a deep beam shows the method capability in handling the reference stress path. Finally, since the analysis may consider the structure as linear-elastic or cracked and non-linear in both the component materials, it is shown how the proposed procedure allows us to verify the possibilities of activation of the design model, oriented to the serviceability condition and deduced in the linear elastic field, by following the evolution of the resistant mechanisms in the cracked non-linear field up to the structural failure.

Masonry infilled frame structures: state-of-the-art review of numerical modelling

  • Nicola, Tarque;Leandro, Candido;Guido, Camata;Enrico, Spacone
    • Earthquakes and Structures
    • /
    • v.8 no.1
    • /
    • pp.225-251
    • /
    • 2015
  • This paper presents a state-of-the-art review of the nonlinear modelling techniques available today for describing the structural behaviour of masonry infills and their interaction with frame structures subjected to in-plane loads. Following brief overviews on the behaviour of masonry-infilled frames and on the results of salient experimental tests, three modelling approaches are discussed in more detail: the micro, the meso and the macro approaches. The first model considers each of the infilled frame elements as separate: brick units, mortar, concrete and steel reinforcement; while the second approach treats the masonry infill as a continuum. The paper focuses on the third approach, which combines frame elements for the beams and columns with one or more equivalent struts for the infill panel. Due to its relative simplicity and computational speed, the macro model technique is more widely used today, though not all proposed models capture the main effects of the frame-infill interaction.

Numerical estimation for safety factors of tunnels considering the failure of supports (지보재 파괴를 고려한 터널 안전율의 수치해석적 산정 연구)

  • You, Kwang-Ho;Park, Yeon-Jun;Hong, Keun-Young;Lee, Hyun-Koo;Kim, Jea-Kwon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.1
    • /
    • pp.37-49
    • /
    • 2005
  • In a tunnel, failure of its supports can cause failure of the tunnel. Therefore it is important to estimate safety factor of the tunnel which the failure of its supports is taken into account. In previous studies, supports of tunnels were usually modelled as beam elements. The failure of the supports was decided by comparing the allowable stress and the calculated bending stresses inside the beam elements in estimating safety factor of the tunnel considering the failure of its supports. In this study, it is suggested how to model the supports properly. To this end, supports of a tunnel were modelled by both beam (elastic) elements and continuum (elasto-plastic) elements in two dimensional numerical analyses. Meanwhile, it was analyzed how rock mass class, coefficient of lateral pressure, shotcrete thickness, the existence of rock bolt, and excavation method had an effect on the safety factor of a tunnel.

  • PDF

Building frame - pile foundation - soil interaction analysis: a parametric study

  • Chore, H.S.;Ingle, R.K.;Sawant, V.A.
    • Interaction and multiscale mechanics
    • /
    • v.3 no.1
    • /
    • pp.55-79
    • /
    • 2010
  • The effect of soil-structure interaction on a single-storey, two-bay space frame resting on a pile group embedded in the cohesive soil (clay) with flexible cap is examined in this paper. For this purpose, a more rational approach is resorted to using the finite element analysis with realistic assumptions. Initially, a 3-D FEA is carried out independently for the frame on the premise of fixed column bases in which members of the superstructure are discretized using the 20-node isoparametric continuum elements. Later, a model is worked out separately for the pile foundation, by using the beam elements, plate elements and spring elements to model the pile, pile cap and soil, respectively. The stiffness obtained for the foundation is used in the interaction analysis of the frame to quantify the effect of soil-structure interaction on the response of the superstructure. In the parametric study using the substructure approach (uncoupled analysis), the effects of pile spacing, pile configuration, and pile diameter of the pile group on the response of superstructure are evaluated. The responses of the superstructure considered include the displacement at top of the frame and moments in the columns. The effect of soil-structure interaction is found to be quite significant for the type of foundation considered in the study. Fair agreement is observed between the results obtained herein using the simplified models for the pile foundation and those existing in the literature based on a complete three dimensional analysis of the building frame - pile foundation - soil system.

Design Sensitivity Analysis and Topology Optimization Method for Power Flow Analysis at High Frequency (고주파수대역에서 파워흐름해석법을 이용한 구조물의 설계민감도 해석과 위상최적설계)

  • 박찬영;박영호;조선호;홍석윤
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.119-126
    • /
    • 2004
  • A continuum-based design sensitivity analysis and topology optimization methods are developed for power flow analysis. Efficient adjoint sensitivity analysis method is employed and further extended to topology optimization problems. Young's moduli of all the finite elements are selected as design variables and parameterized using a bulk material density function. The objective function and constraint are an energy compliance of the system and an allowable volume fraction, respectively. A gradient-based optimization, the modified method of feasible direction, is used to obtain the optimal material layout. Through several numerical examples, we notice that the developed design sensitivity analysis method is very accurate and efficient compared with the finite difference sensitivity. Also, the topology optimization method provides physically meaningful results. The developed is design sensitivity analysis method is very useful to systematically predict the impact on the design variations. Furthermore, the topology optimization method can be utilized in the layout design of structural systems.

  • PDF

Finite Element Analysis of Concrete Columns Strengthened with Glass Fiber Sheets (유리섬유쉬트로 보강된 콘크리트 기둥의 유한요소해석)

  • 정택원;송하원;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.449-454
    • /
    • 2002
  • For finite analysis of concrete columns strengthened with glass fiber sheets, an effective concrete model which considers the confining effects by lateral reinforcement and glass fiber sheets is necessary. In this paper, the so-called elasto-plasticity and continuum fracture model (EPF model) is modified to consider high confining effects of strengthened reinforced concrete columns by introducing a simple correction factor ($\alpha$) which relates maximum lateral confining stress of the column to the evolution of deviatoric plasticity. Then, a finite element analysis is carried out for the strengthened reinforced concrete columns using the modified EPF model and equally spaced truss elements. It is shown that the, analysis predicts well the failure behavior of reinforced concrete columns strengthened with glass fiber sheets.

  • PDF

Inelastic transient analysis of piles in nonhomogeneous soil

  • Kucukarslan, S.;Banerjee, P.K.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.5
    • /
    • pp.545-556
    • /
    • 2007
  • In this paper, a hybrid boundary element technique is implemented to analyze nonlinear transient pile soil interaction in Gibson type nonhomeogenous soil. Inelastic modeling of soil media is presented by introducing a rational approximation to the continuum with nonlinear interface springs along the piles. Modified $\ddot{O}$zdemir's nonlinear model is implemented and systems of equations are coupled at interfaces for piles and pile groups. Linear beam column finite elements are used to model the piles and the resulting governing equations are solved using an implicit integration scheme. By enforcing displacement equilibrium conditions at each time step, a system of equations is generated which yields the solution. A numerical example is performed to investigate the effects of nonlinearity on the pile soil interaction.