• Title/Summary/Keyword: continuous composite bridge

Search Result 77, Processing Time 0.02 seconds

A Case Study on Continuous Prestressed Concrete Composite Girder with Cross-beam Anchorage System (가로보를 정착구조로 하는 연속화 PSC 합성거더 시공사례)

  • Park, Hyun-Myo;Huh, Young;Kim, Yun-Hwan;Kim, Seok-Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.451-452
    • /
    • 2010
  • Prestressed concrete I girder bridge has been one of the most widely used bridges in the world because of its excellent construction feasibility, economic efficiency, serviceability, and safety. But in Korea, the PSC bridge has not been utilized for long span because of high girder height in its standard design. Thus, the results confirm that it is possible to applicate the continuous PSC girder with end cross beam anchorage system using multi-stage prestressing technique.

  • PDF

Comparison of the Fatigue Behaviors of FRP Bridge Decks and Reinforced Concrete Conventional Decks Under Extreme Environmental Conditions

  • Kwon, Soon-Chul;Piyush K. Dutta;Kim, Yun-Hae;Anido, Roberto-Lopez
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.1-10
    • /
    • 2003
  • This paper summarizes the results of the fatigue test of four composite bridge decks in extreme temperatures (-30$^{\circ}C$ and 50$^{\circ}C$ ). The work was performed as part of a research program to evaluate and install multiple FRP bridge deck systems in Dayton, Ohio. A two-span continuous concrete deck was also built on three steel girders for the benchmark tests. Simulated wheel loads were applied simultaneously at two points by two servo-controlled hydraulic actuators specially designed and fabricated to perform under extreme temperatures. Each deck was initially subjected to one million wheel load cycles at low temperature and another one million cycles at high temperature. The results presented in this paper correspond to the fatigue response of each deck for four million load cycles at low temperature and another four million cycles at high temperature. Thus, the deck was subjected to a total of ten million cycles. Quasi-static load-deflection and load-strain responses were determined at predetermined fatigue cycle levels. Except for the progressive reduction in stiffness, no significant distress was observed in any of the composite deck prototypes during ten million load cycles. The effects of extreme temperatures and accumulated load cycles on the load-deflection and load-strain response of FRP composite and FRP-concrete hybrid bridge decks are discussed based on the experimental results.

Redundancy Evaluation of the Composite Two Steel Plate-Girder Bridges (강합성 플레이트 2-거더교의 여유도 평가)

  • Park, Yong-Myung;Joe, Woom-Do-Ji
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.611-620
    • /
    • 2006
  • The composite two plate-girder bridges are generally defined as a non-redundant load path structure because the bridge can collapse if one of the two girders is seriously damaged by a fatigue crack. In this paper, a numerical study on the evaluation of the after-fracture redundancy of the composite two-girder bridges was accomplished. The evaluation has been performed on the simple and three-span continuous bridges with I-section cross beams which serve as transverse bracing, and with or without the bottom lateral bracing system. The load carrying capacities of the intact and damaged bridges with or without lateral bracing were evaluated from material and geometric nonlinear analysis, respectively and the redundancy was evaluated for each case. It was acknowledged from the analytical results that both simple and continuous intact two-girder bridges have sufficient redundancy even without lateral bracing, but it takes an important role to improve the redundancy of damaged bridges.

A Study on the Spacing and Required Flexural Rigidity of Cross Beams in Composite Two-Steel Girder Bridges (강합성 2-거더교의 가로보 배치 간격 및 소요 휨강성에 관한 연구)

  • Park, Yong Myung;Cho, Hyun Joon;Hwang, Min Oh
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.1 s.68
    • /
    • pp.1-10
    • /
    • 2004
  • A study on the evaluation of proper spacing and required flexural rigidity of cross beams in composite two I-section steel girder bridges without a lateral and sway bracing system was performed. Specifically, a 2-lane, 40-m simple span bridge and a 3-span continuous (40+50+10m) bridge were designed, and structural analyses under dead load before and after composite, live, wind, and seismic loads were performed using spacing and flexural rigidity or cross beams as parameters. Through parametric analysis, the effect on the stresses due to the combination of loads and live load distribution was investigated. In addition. material and geometric nonlinear analyses under dead load before composite were performed to evaluate the lateral buckling strength of the steel girders and cross beam. Based on the results or such analyses, the proper spacing and flexural rigidity of cross beams at intermediate points and supports were proposed.

Construction sequence modelling of continuous steel-concrete composite bridge decks

  • Dezi, Luigino;Gara, Fabrizio;Leoni, Graziano
    • Steel and Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.123-138
    • /
    • 2006
  • This paper proposes a model for the analysis of the construction sequences of steel-concrete composite decks in which the slab is cast-in-situ for segments. The model accounts for early age shrinkage, such as thermal and endogenous shrinkage, drying shrinkage, tensile creep effects and the complex sequences of loading due to pouring of the different slab segments. The evolution of the structure is caught by suitably defining the constitutive relationships of the concrete and the steel reinforcements. The numerical solution is obtained by means of a step-by-step procedure and the finite element method. The proposed model is then applied to a composite deck in order to show its potential.

Analytical and Experimental Studies on Partially Composite of Steel-Plate Girder Bridges Using Slab Anchors (바닥판 앵커를 사용한 플레이트거더교의 부분합성에 관한 해석 및 실험 연구)

  • Han, Sang Yun;Park, Nam Hoi;Yoon, Ki Young;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.3 s.70
    • /
    • pp.325-332
    • /
    • 2004
  • Cross sections of steel-plate girder bridges are divided into three cross sections of non-composite, partially composite, and fully composite sections, according to their composite characteristics. The Korean provision for the partially and fully composite sections specifies general usage of the stud of shear connectors, whereas the one for the non-composite section specifies empirical usage of slab anchors. However, the actual behavior of the cross sections of steel-plate girder bridges using slab anchors is close not to the non-composite action, but to the partially composite action. Therefore analytical and experimental studies on partial composites of steel-plate girder bridges using slab anchors are performed in this study. Intial stiffness of the slab anchor is obtained by the experimental study for the first time, and the composite characteristic of simple-span and two-span continuous steel-plate girder bridges is investigated by the finite element analyses for the second time. Based on the obtained initial stiffness, the reduction effect of tensile stresses in the concrete-slab on the intermediate support of the continuous bridge is also considered herein.

Flexural Design of Double Composite Box Girder over Interior Pier by LRFD Method (LRFD법에 의한 이중합성 박스거더 최대부모멘트 단면 휨 설계)

  • Cho, Eun Young;Shin, Dong Ku
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.737-749
    • /
    • 2007
  • Flexural design of double composite box girder over the interior pier for three-span continuous bridge was performed by the LRFD method. The maximum span length of the continuous bridge ranged from 80m to 120m and the relative ratio of the span length was assumed to be 1:1.25:1. The girder section was designed for the strength limit state and service limit state with additional design check for constructibility. Before the bottom concrete and compression flange showed a complete composite action, the buckling of lower compression flange was checked. The flexural stiffness and flexural resistance characteristics for the section and for the constituent members such as tension flange, compression flange, and web were analyzed for different thicknesses of the bottom concrete on top of the compression flange. The effect of the distribution ratio of steel between the top and bottom flanges was investigated by analyzing ductility behavior and stress distribution through the girder's depth for several different relative area ratios of steel between the top and bottom flanges. It was found that a total amount of 15% of steel can be saved by applying the double composite system compared with that of the conventional composite system.

A Study on the Strength Rating of Continuous Composite Plate Girder Bridges by ALFD (ALFD방법에 의한 연속합성판형교의 강도평가에 대한 연구)

  • Han, Sang Cheol;Chung, Kyung Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.2 s.39
    • /
    • pp.213-222
    • /
    • 1999
  • Elastic-plastic methods have been used for the better prediction of the actual behavior of continuous-composite plate girder bridges in the overload and maximum load analysis. The structural evaluation using ALFD(Alternate Load Factor Design) uses the elastic-plastic analysis. The plastic rotations that remain after the load is removed can be occurred by the yielding locations of the maximum moment section. This situation can occur due to the residual stresses even if the moment is below the theoretical yield moment. The local yielding causes positive automoments that assure elastic behavior under subsequent overloads. In this study, the automoments at the piers occurred due to the unit plastic rotations and other locations were calculated by the conjugate-beam method and three-moment equation, using the nine design span with progressively smaller pier sections. The automoments were determined by the developed computer programs in this study in which the moments and plastic rotations from the continuity and moment-inelastic rotation relationships must be equal. And also the ratings of 3-span continuous composite plate girder bridges with non-compact section were carried out according to the Korean Highway Bridge Specification.

  • PDF

The Behavior of Prestressed Composite Box Girder (프리스트레스트 합성상자형교의 거동 특성)

  • 김주형;한택희;김종헌;강영종
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.591-596
    • /
    • 2001
  • In case of continuous steel box-girder bridges, the magnitude of the longitudinal tensile stress on concrete in internal support is larger than the tensile strength of concrete. In this paper, the parametric study was performed to present the effective magnitude of the longitudinal prestress for reducing the longitudinal tensile stress to decrease under the tensile strength of concrete. The parametric study is conducted with changing the steel box-girder section and the span length of bridge. Three dimensional finite element analyses are conducted with ABAQUS program. The behavior of the steel box-girder bridge with prestress is investigated through experimental works on a analogous steel box-girder bridge model, and their results are compared with those of analytical studies.

  • PDF

Transverse seismic response of continuous steel-concrete composite bridges exhibiting dual load path

  • Tubaldi, E.;Barbato, M.;Dall'Asta, A.
    • Earthquakes and Structures
    • /
    • v.1 no.1
    • /
    • pp.21-41
    • /
    • 2010
  • Multi-span steel-concrete composite (SCC) bridges are very sensitive to earthquake loading. Extensive damage may occur not only in the substructures (piers), which are expected to yield, but also in the other components (e.g., deck, abutments) involved in carrying the seismic loads. Current seismic codes allow the design of regular bridges by means of linear elastic analysis based on inelastic design spectra. In bridges with superstructure transverse motion restrained at the abutments, a dual load path behavior is observed. The sequential yielding of the piers can lead to a substantial change in the stiffness distribution. Thus, force distributions and displacement demand can significantly differ from linear elastic analysis predictions. The objectives of this study are assessing the influence of piers-deck stiffness ratio and of soil-structure interaction effects on the seismic behavior of continuous SCC bridges with dual load path, and evaluating the suitability of linear elastic analysis in predicting the actual seismic behavior of these bridges. Parametric analysis results are presented and discussed for a common bridge typology. The response dependence on the parameters is studied by nonlinear multi-record incremental dynamic analysis (IDA). Comparisons are made with linear time history analysis results. The results presented suggest that simplified linear elastic analysis based on inelastic design spectra could produce very inaccurate estimates of the structural behavior of SCC bridges with dual load path.