• Title/Summary/Keyword: contaminated water

Search Result 1,318, Processing Time 0.032 seconds

Enhanced In-situ Mobilization and Biodegradation of Phenanthrens from Soil by a Solvent/Surfactant System

  • Kim, Eun-Ki;Ahn, Ik-Sung;L.W.Lion;M.L.Shuler
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.4
    • /
    • pp.716-719
    • /
    • 2001
  • The mobilization and biodegradation of phenanthrene in soil was enhanced by using paraffin oil, which was stabilized by the addition of a surfactant (Brji 30). The ratio of paraffin oil/Brij 30 was determined by measuring the change in the critical micelle concentration. When only surfactant was used, the stabilized paraffin oil emulsion could dissolve more phenanthrene in the water phase. Column experiment showed increased phenanthrene mobilization from the contaminated soil. The phenanthrene mobilized in the paraffine oil/Brij 30 emulsion was biodegraded faster than that in water phase or surfactant solution. This result indicates that a paraffin oil/surfactant system can be effectively used for the removal of PAH from contaminated soil.

  • PDF

환경물리탐사 기법을 이용한 유류오염 주유소 부지 특성 조사

  • Kim Chang-Ryeol;Go Gyeong-Seok;Kim Jeong-Ho;Park Sam-Gyu;Son Jeong-Sul;Jeong Ji-Min
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.429-432
    • /
    • 2005
  • Geophysical investigations, as a non-invasive method, were conducted at the former gas station site contaminated with fuel hydrocarbons. GPR (Ground Penetrating Radar) survey was performed to locate buried objects such as USTs (Underground Storage Tanks) and fuel pipes which might serve as a origin of the site contamination. Additional GPR investigation and a resistivity survey were conducted to map water table and to characterize shallow geologic structures of the site. The results of the study have shown that seven USTs including one unknown UST and buried fuel pipes are present, and that the groundwater elevation varies with topography from approximately 1.5 to 3m below the surface and the water table is located in the residual soils above the bedrock in the site. The results also show that the geophysical methods can be a very useful tool for the characterization of the contaminated site.

  • PDF

Remediation of Insecticides (Parathion, Diazinon) Contaminated Soil by Washing Process (토양 세척을 통한 살충제 (파라티온, 다이아지논)로 오염된 토양의 정화)

  • 현재혁;백정선;조미영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1999.10a
    • /
    • pp.3-6
    • /
    • 1999
  • Several chemical washing procedures were applied to Parathion and Diazinon contaminated soil. Batch and column tests were performed to determine the insecticides extraction efficiency as a function of pH. Washing efficiency of methanol is more higher than that of water and HCl when washed parathion and diazinon are. Those are completely miscible with most organic solvents. For parathion, release trend is increased as pH is increased because it is hydrolyzed easily at the condition of alkali. But diazinon shows reverse because diazinon is decomposed rapidly at the condition of acidic So, diazinon is more released than parathion is because this experiment is peformed in acidic and weak acidic conditions. Generally, parathion and diazinon are classified as having low mobility, so they can be easily controlled if the proper washing process are applied.

  • PDF

Investigation of the Geoelectrical Response at the Hydrocarbon-impacted Zone (유류 오염대의 전기적 물성 특성 연구)

  • Kim, Chang-Ryol;Ko, Kyung-Seok;Kim, Jung-Ho
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.225-230
    • /
    • 2007
  • A physical model experiment with GPR and 3-D resisitivity survey were conducted to investigate the geoelectrical response of hydrocarbon-impacted zone, so called smeared zone, on the geophysical data. The results from the experiment show that GPR signals were enhanced when LNAPL was present as a residual saturation in the water saturated system (${\varepsilon}_r$ = 21) due to less attenuation of the electromagnetic energy through the medium, compared to when the medium was saturated with only water (${\varepsilon}_r$ = 21). 3-D resistivity data obtained from the former gas station site demonstrate that the highly contaminated zones could be imaged with low resistivities attributed to the biodegradation of petroleum hydrocarbons at the aged, hydrocarbon-impacted sites. The study results also show that the geophysical methods, as a non-invasive sounding technique, can be a very useful tool for mapping hydrocarbon-contaminated zones.

  • PDF

Real-time monitoring system for management of chemically management of chemically contaminated water pipeline (유해화학물질 이송관로 파손누수 실시간 감시 기술)

  • Kim, Joon-Seok;Yoon, Byoung-Jo;Seo, Jae-Soon
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2015.11a
    • /
    • pp.195-196
    • /
    • 2015
  • 유해화학물질 이송관로의 실시간 유지관리를 위하여 파손사전 예방감시를 위한 이중구조 파이프 제작, GIS관망 구축을 위한 측량 및 시공 속성정보 수집을 위한 스마트 폰 앱 프로그램 개발, 실시간 감시를 위한 서버프로그램 개발을 수행하였다. 또한, 파일럿규모의 야외시험시설을 구축하여 시스템 동작여부를 확인하였다. 파손 예방은 파이프에 부착된 센서 케이블을 통하여 감지하도록 하였고, 누수는 압력센서를 일정한 간격으로 설치하여 시험하였다. VRS 측량장비와 스마트폰을 연계할 수 있는 앱 프로그램으로 실시간 자료 수집을 수행할 수 있도록 하였고, 감시 서버프로그램을 통하여 실시간 감시 및 알람이 가능하도록 하였다.

  • PDF

Bacteria and Fungi as Alternatives for Remediation of Water Resources Polluting Heavy Metals

  • Joo, Jin-Ho;Hussein, Khalid A.;Hassan, Sedky H.A.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.4
    • /
    • pp.600-614
    • /
    • 2011
  • Classical methods which used for removal of heavy metals from contaminated water are adsorption, precipitation, coagulation, ion exchange resin, evaporation, and membrane processes. Microbial biosorption can be used for the removal of contaminated waters with pollutants such as heavy metals and dyes which are not easily biodegradable. Microbial biosorbents are inexpensive, eco friendly and more effective for the removal of toxic metals from aqueous solution. In this review, the bacterial and fungal abilities for heavy metals ions removal are emphasized. Environmental factors which affect biosorption process are also discussed. A detailed description for the most common isotherm and kinetic models are presented. This article reviews the achievements and the current status of bacterial and fungal biosorption technology for heavy metals removal and provides insights for further researches.

INFLUENCE OF ARTIFICIAL SALIVA CONTAMINATION ON BONDING OF DENTIN ADHESIVES TO DENTIN (인공타액 오염이 수종 상아질접착제와 상아질간의 결합에 미치는 영향)

  • Ryu, Mee-Ae;Yang, Kyu-Ho;Oh, Won-Mann
    • Restorative Dentistry and Endodontics
    • /
    • v.17 no.2
    • /
    • pp.383-397
    • /
    • 1992
  • The purpose of this study was to evaluate the influence of artificial saliva contamination on bonding of several dentin adhesives to dentin. Sixty - three human molar teeth extracted within a month were used. Each tooth was sectioned longitudinally in a buccolingual direction to obtain 126 specimens. These specimens were randomly divided into three groups and were treated by Scotchbond 2, Gluma and All bond. Each group was subdivided into three subgroups; normal group not contaminated with artificial saliva, contaminated with artificial saliva and dried group, and contaminated with artificial saliva and washed and dried group. Enamel/dentin bonding agent(Dental Adhesive of Scotchbond 2) was applied and light cured on the treated dentin surfaces. Thereafter P - 50 were cured on them, and specimens were stored in $37^{\circ}C$ artificial saliva for 24 hours before measuring shear bond strength. Shear bond strengths were determined using an universal testing machine with cross head speed 1mm/min and SEM examinations were conducted to evaluate the resin - dentin interface and degree of penetrating resin string into the dentinal tubules. The following results were obtained. 1. Normal groups not contaminated with artificial saliva showed greater shear bond strength than any other group contaminated with artificial saliva(P<0.01). 2. The shear bond strengths showed no significant difference between washed groups with distilled water and not washed groups after contamination with artificial saliva(P>0.05). 3. In normal groups, the shear bond strength of A group was significantly greater than in any other group(P<0.01). 4. In Sand G groups, fractures after shear bond strength tests occured adhesively on resintooth interface in all specimens. But in A groups, fracture of the normal group occured cohesively in dentin and fracture of the contaminated groups occured adhesively and cohesively. 5. On SEM examination, the number of resin strings penetrated into dentinal tubules were the greatest in normal groups, followed by, in descending order, washed groups and not washed groups after contamination with artificial saliva.

  • PDF

Analytical Method of Polycyclic Aromatic Hydrocarbons (PAHs) in Petroleum Contaminated Soils - Focused on the 16 US EPA Priority PAHs (유류오염토양 중 다환방향족탄화수소류(PAHs) 분석방법 연구 - US EPA 16종 PAHs를 중심으로)

  • Kim, Ji Young;Kim, Dongho;Kim, Tae Seung;Han, Jin-Suk;Lee, Jai-Young;Noh, Hoe-Jung
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.5
    • /
    • pp.20-30
    • /
    • 2012
  • In case of analyzing PAHs (EPA 16 compounds) in oil-contaminated soils, the lump of peaks may occur because of the aliphatic and polar compounds in oil. This phenomenon is due to the lower accuracy of the analysis. To solve this problem, evaluation of application of silicagel-alumina multi-layer fraction was performed using standard substances and oil-contaminated soils. As a result of application of silicagel-alumina multi-layer fraction cleanup method using standard substances, recovery rates of surrogate standards (5 compounds including Naphthalene-d8) were 83~100% and those of target standards were 75~129%. These were to meet the target values (60~130%) in this study. When used 4% water-silicagel column analyze PAHs in oil-contaminated soils, Some problems were generated for quantitative analysis of PAHs; concentration of PAHs was underestimated due to an upward baseline of internal standard (recovery rate: less than 60%) and overestimated by the lump of peaks which were not purified (the biggest recovery rate: more than 400%). On the other hand, in case of silicagel-alumina multi-layer fraction cleanup method, recovery rate of surrogate standards were 61~101.6%. Therefore this cleanup method was considered a valid method to improve accuracy of analysis of PAHs in oil-contaminated soils.

Biodegradation of Gasoline Contaminated Soils under Denitrifying Conditions

  • Oh, In-Suk;Lee, Si-Jin;Chang, Soon-Woong
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.392-396
    • /
    • 2003
  • Leaking underground storage tanks are a major source of groundwater contamination by petroleum hydrocarbons. Aerobic bioremediation has been highly effective in the remediation of many fuel releases. Bioremediation of aromatic hydrocarbons in groundwater and sediments is ofen limited by the inability to provide sufficient oxygen to the contaminated zones due to the low water solubility of oxygen. Nitrate can also serve as an electron acceptor And nitrate is less expensive and more soluble than oxygen. it may be more economical to restore fuel-contaminated aquifers using nitrate rather than oxygen. And denitrifying bacteria are commonly found in the subsurface and in association with contaminated aquifer materials. These studies have shown that BTEX and MTBE can be degraded by the nitrate-amended microcosms under aerobic and anaerobic conditons. Biodegradation of the toluene and ethylbenzne compounds occurred very quickly under denitrifying conditions. MTBE, benzene and p-xylene were recalcitrant under denitrifying conditions in this study.

  • PDF

Numerical Simulation of Water Table Drawdown due to Groundwater Pumping in a Contaminated Aquifer System at a Shooting Test Site, Pocheon, Korea

  • Kihm, Jung-Hwi;Hwang, Gisub
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.247-257
    • /
    • 2021
  • The study area has been contaminated with explosive materials and heavy metals for several decades. For the design of the pump and treat remediation method, groundwater flow before and during groundwater pumping in a contaminated aquifer system was simulated, calibrated, and predicted using a generalized multidimensional hydrological numerical model. A three-dimensional geologic formation model representing the geology, hydrogeology, and topography of the aquifer system was established. A steady-state numerical simulation with model calibration was performed to obtain initial steady-state spatial distributions of groundwater flow and groundwater table in the aquifer system before groundwater pumping, and its results were illustrated and analyzed. A series of transient-state numerical simulations were then performed during groundwater pumping with the four different pumping rates at a potential location of the pumping well. Its results are illustrated and analyzed to provide primary reference data for the pump and treat remediation method. The results of both steady-state and transient-state numerical simulations show that the spatial distribution and properties of the geologic media and the topography have significant effects on the groundwater flow and thus depression zone.