• Title/Summary/Keyword: contact-based motion recognition

Search Result 12, Processing Time 0.021 seconds

The analysis of the characteristic types of motion recognition smart clothing products (동작인식 스마트 의류제품의 특징적 유형 분석)

  • Im, Hyobin;Ko, Hyun Zin
    • The Research Journal of the Costume Culture
    • /
    • v.25 no.4
    • /
    • pp.529-542
    • /
    • 2017
  • The purpose of this study is to utilize technology as basic data for smart clothing product research and development. This technology can recognize user's motion according to characteristics types and functions of wearable smart clothing products. In order to analyze the case of motion recognition products, we searched for previous research data and cases referred to as major keywords in leading search engines, Google and Naver. Among the searched cases, information on the characteristics and major functions of the 42 final products selected on the market are examined in detail. Motion recognition for smart clothing products is classified into four body types: head & face, body, arms & hands, and legs & feet. Smart clothing products was developed with various items, such as hats, glasses, bras, shirts, pants, bracelets, rings, socks, shoes, etc., It was divided into four functions health care type for prevention of injuries, health monitor, posture correction, sports type for heartbeat and exercise monitor, exercise coaching, posture correction, convenience for smart controller and security and entertainment type for pleasure. The function of the motion recognition smart clothing product discussed in this study will be a useful reference when designing a motion recognition smart clothing product that is blended with IT technology.

Implementation of Non-Contact Gesture Recognition System Using Proximity-based Sensors

  • Lee, Kwangjae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.3
    • /
    • pp.106-111
    • /
    • 2020
  • In this paper, we propose the non-contact gesture recognition system and algorithm using proximity-based sensors. The system uses four IR receiving photodiode embedded on a single chip and an IR LED for small area. The goal of this paper is to use the proposed algorithm to solve the problem associated with bringing the four IR receivers close to each other and to implement a gesture sensor capable of recognizing eight directional gestures from a distance of 10cm and above. The proposed system was implemented on a FPGA board using Verilog HDL with Android host board. As a result of the implementation, a 2-D swipe gesture of fingers and palms of 3cm and 15cm width was recognized, and a recognition rate of more than 97% was achieved under various conditions. The proposed system is a low-power and non-contact HMI system that recognizes a simple but accurate motion. It can be used as an auxiliary interface to use simple functions such as calls, music, and games for portable devices using batteries.

Kinect-based Motion Recognition Model for the 3D Contents Control (3D 콘텐츠 제어를 위한 키넥트 기반의 동작 인식 모델)

  • Choi, Han Suk
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.1
    • /
    • pp.24-29
    • /
    • 2014
  • This paper proposes a kinect-based human motion recognition model for the 3D contents control after tracking the human body gesture through the camera in the infrared kinect project. The proposed human motion model in this paper computes the distance variation of the body movement from shoulder to right and left hand, wrist, arm, and elbow. The human motion model is classified into the movement directions such as the left movement, right movement, up, down, enlargement, downsizing. and selection. The proposed kinect-based human motion recognition model is very natural and low cost compared to other contact type gesture recognition technologies and device based gesture technologies with the expensive hardware system.

A Study of an MEMS-based finger wearable computer input devices (MEMS 기반 손가락 착용형 컴퓨터 입력장치에 관한 연구)

  • Kim, Chang-su;Jung, Se-hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.791-793
    • /
    • 2016
  • In the development of various types of sensor technology, the general users smartphone, the environment is increased, which can be seen in contact with the movement recognition device, such as a console game machine (Nintendo Wii), an increase in the user needs of the action recognition-based input device there is a tendency to have. Mouse existing behavior recognition, attached to the outside, is mounted in the form of mouse button is deformed, the left mouse was the role of the right button and a wheel, an acceleration sensor (or a gyro sensor) inside to, plays the role of a mouse cursor, is to manufacture a compact, there is a difficulty in operating the button, to apply a motion recognition technology is used to operate recognition technology only pointing cursor is limited. Therefore, in this paper, using a MEMS-based motion-les Koguni tion sensor (Motion Recognition Sensor), to recognize the behavior of the two points of the human body (thumb and forefinger), to generate the motion data, and this to the foundation, compared to the pre-determined matching table (moving and mouse button events cursor), and generates a control signal by determining, were studied the generated control signal input device of the computer wirelessly transmitting.

  • PDF

Development of Interactive Media Player for Kiosk with User Motion Detection (사용자 모션 인식 기반 키오스크 전용 인터랙티브 미디어 플레이어 개발)

  • Song, Bok Deuk;Kim, Hyeong-Jin;Jeong, Hyeon-Jae;Choi, Yeon Jun
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.11
    • /
    • pp.270-277
    • /
    • 2019
  • These days, with the advent of digital broadcasting, media environment offers users an opportunity to enjoy differentiated contents in a more aggressive fashion through user-media interactions based on computer technology. In fact, the development of contents which can induce spontaneous acts from users such as outdoor ads which use certain sensors and devices and exhibition halls has been active. With the development of low-price motion recognition devices, people have been able to enjoy diverse interaction-applied media by recognizing users' motion data without body contact. In this paper, we developed an interactive media player that can recognize the user's motion and control the video in the web service environment without installing a specific program. In addition, we set user motion recognition range and developed a user motion recognition algorithm suitable for the Leap Motion equipment installed in the kiosk. The results of this study can be experienced by various interactive media such as interactive tourism, education, and movie contents in kiosks that can be installed in public places.

Implementation of EPS Motion Signal Detection and Classification system Based on LabVIEW (LabVIEW 기반 EPS 동작신호 검출 및 분석 시스템 구현)

  • Cheon, Woo Young;Lee, Suk Hyun;Kim, Young Chul
    • Smart Media Journal
    • /
    • v.5 no.3
    • /
    • pp.25-29
    • /
    • 2016
  • This paper presents research for non-contact gesture recognition system using EPS(Electronic Potential Sensor) for measuring the human body of electromagnetic fields. It implemented a signal acquisition and signal processing system for designing a system suitable for motion recognition using the data coming from the sensors. we transform AC-type data into DC-type data by applying a 10Hz LPF considering H/W sampling rate. in addition, we extract 2-dimensional movement information by taking difference value between two cross-diagonal deployed sensor.

Near-field Data Exchange by Motion Recognition of mobile phone (모바일 폰의 모션 인식에 의한 근거리 데이터 교환)

  • Hwang, Tae-won;Seo, Jung-hee;Park, Hung-bog
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.800-801
    • /
    • 2017
  • Location-based services (LBS) are used in various applications such as emergency support, navigation, location, traffic routes, information gathering, and entertainment due to the rapid growth of information communication technologies and mobile phones. In general, locations are represented by coordinates and are related to terrain. These are of great interest in mobile-based data transmission. This paper proposes a method to exchange the contact of the other party by detecting the movement of the mobile phone of the individual user based on the location-based service. The proposed method extracts motion using the acceleration sensor of the mobile phone and transmits the location and time information to the server when the motion continues for a predetermined time. Attempts to establish a connection between users who are experiencing motion in mobile phones in the short distance have been made from the server. Once the connection between the users is made, the encrypted contact is received from the server. Experimental results show that the proposed method can exchange data by minimizing the processing in the handset compared with the existing method.

  • PDF

Identification of Contact State between Parts during Peg-in-Hole Process by Fuzzy Inference Method (Fuzzy 추론법에 의한 부품 삽입 공화의 접합상태 판별)

  • Chung, Gwang-Jo;Ryu, Sang-Uk;Lee, Hyon-Woo;Chong, Won-Yong;Lee, Soo-Heum
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.1
    • /
    • pp.80-88
    • /
    • 1994
  • In the automation of rigid parts mating process with the intelligent robots, Peg-In-Hole is the most available task since inserting is some analytic and needs suitable range of forces that can be controlled by induatrial manipulators. In this Peg-In-Hole process, it is very important to identify the contact state between tow parts, peg and hole, to build the strategies for robot motion that leads to avoid the jamming condition occurs during insertion process. In this paper, we adpopted 3 parameters for identification, lFzl, lFxy/Fzl, and lMxy/Fxyl, derived from axes value of Whitney's jamming diagram. Also, we defined the fuzzy membership functions for these parameters and developed the identification algorithm based on fuzzy inference method of max-product. As an experimental result, we obtained about 96% of identification ratio that could be raised up to industrial requirements by further research.

  • PDF

Development of Hand Recognition Interface for Interactive Digital Signage (인터렉티브 디지털 사이니지를 위한 손 인식 인터페이스 개발)

  • Lee, Jung-Wun;Cha, Kyung-Ae;Ryu, Jeong-Tak
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.22 no.3
    • /
    • pp.1-11
    • /
    • 2017
  • There is a Growing Interest in Motion Recognition for Recognizing Human Motion in Camera Images. As a Result, Researches are Being Actively Conducted to Control Digital Devices with Gestures at a Long Distance. The Interface Using Gesture can be Effectively Used in the Digital Signage Industry Where the Advertisement Effect is Expected to be Exposed to the Public in Various Places. Since the Digital Signage Contents can be Easily Controlled through the Non-contact Hand Operation, it is Possible to Provide the Advertisement Information of Interest to a Large Number of People, Thereby Providing an Opportunity to Lead to Sales. Therefore, we Propose a Digital Signage Content Control System Based on Hand Movement at a Certain Distance, which can be Effectively Used for the Development of Interactive Advertizing Media.

PC based Immersive Virtual Environment(PIVE) System by Recognizing Human Motion (인체 동작 인식을 통한 PC 기반의 몰입 형 가상 환경 시스템)

  • Oh Young-Il;Jo Kyoung-Hwan;Lee Ji-Hong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.4 s.310
    • /
    • pp.103-112
    • /
    • 2006
  • In this paper, we propose a PC based immersive virtual environment system with expandability and compatibility in contrary to existing immersive virtual environment(IVE) systems which have been implemented by supercomputer or special computing system. The application based on commercial personal compute may have two major advantage: one is variety of resources, the other is user-friendly interface. This system intends to offer easy contact to IVE system, realistic images, and convenience. Also, the system can handle various virtual reality at real-time and make it easier to interface existing complicated haptic device. Geometric techniques are adopted to calculate and visualize the physical phenomenon to speed up the computing time. The proposed implementation method of PC based immersive virtual environment system is implemented to the example in which user move around inside of and interact with virtual office environment wearing data glove, behavior recognition devices, and HMD.