• Title/Summary/Keyword: contact resistivity

Search Result 257, Processing Time 0.045 seconds

Electron Beam Evaporated ITO Transparent Electrode for Highly Efficiency GaN-based Light Emitting Diode (고효율 질화갈륨계 발광 다이오드용 전자선 증착 ITO 투명 전도 전극 연구)

  • Seo, Jae Won;Oh, Hwa Sub;Kang, Ki Man;Moon, Seong Min;Kwak, Joon Seop;Lee, Kuk Hwe;Lee, Woo Hyun;Park, Young Ho;Park, Hae Sung
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.10
    • /
    • pp.683-690
    • /
    • 2008
  • In order to develop transparent electrodes for high efficiency GaN-based light emitting diodes (LEDs), the electrical and optical properties of the electron beam evaporated ITO contacts have been investigated as a function of the deposition temperature and flow rate of oxygen during the deposition. As the deposition temperature increases from $140^{\circ}C$ to $220^{\circ}C$, the resistivity of the ITO films decreases slightly from $4.0{\times}10^{-4}{\Omega}cm$ to $3.3{\times}10^{-4}{\Omega}cm$, meanwhile the transmittance of the ITO films significantly increases from 67% to 88% at the wavelength of 470 nm. When the flow rate of oxygen during the deposition increases from 2 sccm to 4 sccm, the resistivity of the ITO films increases from $3.6{\times}10^{-4}{\Omega}cm$ to $7.4{\times}10^{-4}{\Omega}cm$, meanwhile the transmittance of the ITO films increases from 86% to 99% at 470 nm. Blue LEDs fabricated with the electron beam evaporated ITO electrode show that the ITO films deposited at $200^{\circ}C$ and 3 sccm of the oxygen flow rate give a low forward-bias voltage of 3.55 V at injection current of 20 mA with a highest output power.

A study on the manufacturing of metal/plastic multi-components using the DSI molding (DSI 성형을 이용한 금속/플라스틱 복합 부품 제조에 관한 연구)

  • Ha, Seok-Jae;Cha, Baeg-Soon;Ko, Young-Bae
    • Design & Manufacturing
    • /
    • v.14 no.4
    • /
    • pp.71-77
    • /
    • 2020
  • Various manufacturing technologies, including over-molding and insert-injection molding, are used to produce hybrid plastics and metals. However, there are disadvantages to these technologies, as they require several steps in manufacturing and are limited to what can be reasonably achieved within the complexities of part geometry. This study aims to determine a practical approach for producing metal/plastic hybrid components by combining plastic injection molding and metal die casting to create a new hybrid metal/plastic molding process. The integrated metal/plastic hybrid injection molding process developed in this study uses the proven method of multi-component technology as a basis to combine plastic injection molding with metal die casting into one integrated process. In this study, the electrical conductivity and ampacity were verified to qualify the new process for the production of parts used in electronic devices. The electrical conductivity was measured, contacting both sides of the test sample with constant pressure, and the resistivity was measured using a micro ohmmeter. Also, the specific conductivity was subsequently calculated from the resistivity and contact surface of the conductor path. The ampacity defines the maximum amount of current a conductive path can carry before sustaining immediate or progressive deterioration. The manufactured hybrid multi-components were loaded with increasing currents, while the temperature was recorded with an infrared camera. To compare the measured infrared images, an electro-thermal simulation was conducted using commercial CAE software to predict the maximum temperature of the power loaded parts. Overall, during the injection molding process, it was demonstrated that multifunctional parts can be produced for electric and electronic applications.

The comparative study of pure and pulsed DC plasma sputtering for synthesis of nanocrystalline Carbon thin films

  • Piao, Jin Xiang;Kumar, Manish;Javid, Amjed;Wen, Long;Jin, Su Bong;Han, Jeon Geon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.320-320
    • /
    • 2016
  • Nanocrystalline Carbon thin films have numerous applications in different areas such as mechanical, biotechnology and optoelectronic devices due to attractive properties like high excellent hardness, low friction coefficient, good chemical inertness, low surface roughness, non-toxic and biocompatibility. In this work, we studied the comparison of pure DC power and pulsed DC power in plasma sputtering process of carbon thin films synthesis. Using a close field unbalanced magnetron sputtering system, films were deposited on glass and Si wafer substrates by varying the power density and pulsed DC frequency variations. The plasma characteristics has been studied using the I-V discharge characteristics and optical emission spectroscopy. The films properties were studied using Raman spectroscopy, Hall effect measurement, contact angle measurement. Through the Raman results, ID/IG ratio was found to be increased by increasing either of DC power density and pulsed DC frequency. Film deposition rate, measured by Alpha step measurement, increased with increasing DC power density and decreased with pulsed DC frequency. The electrical resistivity results show that the resistivity increased with increasing DC power density and pulsed DC frequency. The film surface energy was estimated using the calculated values of contact angle of DI water and di-iodo-methane. Our results exhibit a tailoring of surface energies from 52.69 to $55.42mJ/m^2$ by controlling the plasma parameters.

  • PDF

Preparation and Optoelectric Characteristics of Low Power Consumption Type AC Powder EL Devices with Dielectrics and Rear Contact (유전재료와 후면전극에 따른 저전력 소비형 AC Powder EL 소자 제조 및 광전기적 특성)

  • Lee, Kang-Ryeol;Park, Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.2
    • /
    • pp.120-125
    • /
    • 2002
  • AC powder EL devices were fabricated by screen printing method with the dielectric materials in insulating layer and the electrical resistivity of rear electrode. Brightness and current density were measured at voltage range of 50∼300 $V_{rms}$ to estimate optoelectrical properties of AC powder EL devices, respectively. Frequency generator was used as system producing frequency and voltage of a sine wave. Brightness and current density were measured by luminometer and multimeter. Also, dielectric constant for dielectric layer was measured by impedance analyser after preparing thick film. Dielectric constant was improved with amount of $TiO_2$ to $BaTiO_3$ powder. By applying such a process to dielectric layer of low cost AC powder EL device, brightness was improved to 50 cd/$m^2$ at similar current density. Dielectric constant $BaTiO_3$ powder by solution combustion process is better than commercial $BaTiO_3$ powder. By applying to that of low power consumption AC powder EL device, brightness was improved to 85 cd/$m^2$. Brightness of AC powder EL device was relatively decreased by control of electrical resistivity of rear electrode, current density was also decreased.

Ohmic Contact of Ti/Au Metals on n-type ZnO Thin Film (Ti/Au 금속과 n-type ZnO 박막의 Ohmic 접합 연구)

  • Lee, Kyoung-Su;Suh, Joo-Young;Song, Hoo-Young;Kim, Eun-Kyu
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.5
    • /
    • pp.339-344
    • /
    • 2011
  • The Ohmic contact of Ti/Au metals on n-type ZnO thin film deposited on c-plane sapphire substrates by pulsed laser deposition was investigated by TLM (transfer length method) patterns. The Ti/Au metal films with thickness of 35 nm and 90 nm were deposited by electron-beam evaporator and thermal evaporator, respectively. By using the photo-lithography method, the $100{\times}100{\mu}m^2$ TLM patterns with $6{\sim}61{\mu}m$ gaps were formed. To improve the electrical properties as well as to decrease an interface states and stress between metal and semiconductor, the post-annelaing process was done in oxygen ambient by rapid thermal annealing system at temperature of $100{\sim}500^{\circ}C$ for 1 min. In this study, it appeared that the minimum specific contact resistivity shows about $1.1{\times}10^{-4}{\Omega}{\cdot}cm^2$ in $300^{\circ}C$ annealed sample, which may be originated from formation of oxygen vacancies of ZnO during an oxidation of Ti metal at the interface of Ohmic contacts.

A Study on the Wear Characteristics of Aluminizing Steel ( 1 ) - Wear in Run-in Period on Rolling-Sliding Contact - (알루미나이징 강의 마모특성에 관한 연구 ( 1 ) - Rolling-Sliding 마찰의 초기마모영역을 중심으로 -)

  • 이규용
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.14 no.2
    • /
    • pp.69-78
    • /
    • 1978
  • It is well known that the aluminizing steel is excellent in corrosion resistance and heat resistance. Therefore it has been used as boiler parts, heat exchanger parts and guide rails which are used under comparatively simple conditions. Recently, it has been noticed that aluminizing steel has high resistance to various atmosphere, high temperature oxidation and seawater resistance. So its usage has been extended widely to the production of parts such as intake and exhaust valve of internal combustion engine, turbine blade and pipelines On ships which required such properties. It is considered that aluminium coated steel is excellent in wear resistance because of high hardness on main ingredient FezAIs of Fe-AI alloy layer existed in diffusion coating layer. And it will beused as a new material taking wear resitance with seawater resistance in marine field. However it is difficult to findout any report concering the wear behaviors or properties of alum in izing steel. In this study the experiment was carried out under the condition of rolling-sliding contact using an Amsler-type wear testing machine at 0.80, 0.91, 1. 10, 1. 25% of slip ratio and 55.43, 78.38, 110.85 kg/mm^2 of Hertz's contact stress in run-in period for the purpose of service-ability test of aluminizing steel as a wear resisting material and obtaining the available design data. The followings are the obtained results from the experimen tal study; 1) The 2nd diffusion material has most excellent wear resistance. This material has brought out about 18% decrease of wear weight in a lower friction load level and 40~G decrease in a higher level comparing to the raw material. 2) Satisfactory effect of wear resistivity cannot be much expected in 2nd diffusion specimens. This is considered due to the formation of fine void in the alloy layer near the boundary to the aluminium layer. 3) Fracture on friction surface of aluminizing steel by the rolling-sliding contact is spalling, and spalling crack occurres initially beneath the specimen surface near the boundary in diffusion coating layer.

  • PDF

Formation of Ni / Cu Electrode for Crystalline Si Solar Cell Using Light Induced Electrode Plating (광유도 전해 도금법을 이용한 결정질 실리콘 태양전지용 Ni/Cu 전극 형성)

  • Hong, Hyekwon;Park, Jeongeun;Cho, Youngho;Kim, Dongsik;Lim, Donggun;Song, Woochang
    • Journal of Institute of Convergence Technology
    • /
    • v.8 no.1
    • /
    • pp.33-39
    • /
    • 2018
  • The screen printing method for forming the electrode by applying the existing pressure is difficult to apply to thin wafers, and since expensive Ag paste is used, it is difficult to solve the problem of cost reduction. This can solve both of the problems by forming the front electrode using a plating method applicable to a thin wafer. In this paper, the process conditions of electrode formation are optimized by using LIEP (Light-Induced Electrode Plating). Experiments were conducted by varying the Ni plating bath temperature $40{\sim}70^{\circ}C$, the applied current 5 ~ 15 mA, and the plating process time 5 ~ 20 min. As a result of the experiment, it was confirmed that the optimal condition of the structural characteristics was obtained at the plating bath temperature of $60^{\circ}C$, 15 mA, and the process time of 20 min. The Cu LIEP process conditions, experiments were conducted with Cu plating bath temperature $40{\sim}70^{\circ}C$, applied voltage 5 ~ 15 V, plating process time 2 ~ 15 min. As a result of the experiment, it was confirmed that the optimum conditions were obtained as a result of electrical and structural characteristics at the plating bath temperature of $60^{\circ}C$ and applied current of 15 V and process time of 15 min. In order to form Ni silicide, the firing process time was fixed to 2 min and the temperature was changed to $310^{\circ}C$, $330^{\circ}C$, $350^{\circ}C$, and post contact annealing was performed. As a result, the lowest contact resistance value of $2.76{\Omega}$ was obtained at the firing temperature of $310^{\circ}C$. The contact resistivity of $1.07m{\Omega}cm^2$ can be calculated from the conditionally optimized sample. With the plating method using Ni / Cu, the efficiency of the solar cell can be expected to increase due to the increase of the electric conductivity and the decrease of the resistance component in the production of the solar cell, and the application to the thin wafer can be expected.

Optimization of polymer substrate's surface treatment for improvement of transparent conducting oxide thin film (투명전도막의 특성향상을 위한 기판 표면처리법의 최적화)

  • Choi, Woo-Jin;Kim, Ji-Hoon;Jung, Ki-Young;Darma, Jessie;Choo, Young-Bae;Sung, Youl-Moon;Kwak, Dong-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1425_1426
    • /
    • 2009
  • In this study, commercially available polyethylene terephthalate(PET), which is widely used as a substrate of flexible electronic devices, was modified by dielectric barrier discharge(DBD) method in an air condition at atmospheric pressure, and aluminium - doped zinc oxide (ZnO:Al) transparent conducting film was deposited on PET substrate by r. f. magnetron sputtering method. Surface analysis and characterization of the plasma-treated PET substrate was carried out using contact angle measurements, X-ray Photoelectron Spectroscopy(XPS) and Atomic Force Microscopy (AFM). Especially the effect of surface state of PET substrate on some important properties of ZnO:Al transparent conducting film such as electrical and morphological properties and deposition rate of the film, was studied experimentally. The results showed that the contact angle of water on PET film was reduced significantly from $62^{\circ}$ to $43^{\circ}$ by DBD surface treatment at 20 min. of treatment time. The plasma treatment also improved the deposition rate and electrical properties. The deposition rate was increased almost linearly with surface treatment time. The lowest electrical resistivity as low as $4.97{\times}10^{-3}[\Omega-cm]$ and the highest deposition rate of 234[${\AA}m$/min] were obtained in ZnO:Al film with surface treatment time of 5min. and 20min., respectively.

  • PDF

Co-Deposition법을 이용한 Yb Silicide/Si Contact 및 특성 향상에 관한 연구

  • Gang, Jun-Gu;Na, Se-Gwon;Choe, Ju-Yun;Lee, Seok-Hui;Kim, Hyeong-Seop;Lee, Hu-Jeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.438-439
    • /
    • 2013
  • Microelectronic devices의 접촉저항의 향상을 위해 Metal silicides의 형성 mechanism과 전기적 특성에 대한 연구가 많이 이루어지고 있다. 지난 수십년에 걸쳐, Ti silicide, Co silicide, Ni silicide 등에 대한 개발이 이루어져 왔으나, 계속적인 저저항 접촉 소재에 대한 요구에 의해 최근에는 Rare earth silicide에 관한 연구가 시작되고 있다. Rare-earth silicide는 저온에서 silicides를 형성하고, n-type Si과 낮은 schottky barrier contact (~0.3 eV)를 이룬다. 또한, 비교적 낮은 resistivity와 hexagonal AlB2 crystal structure에 의해 Si과 좋은 lattice match를 가져 Si wafer에서 high quality silicide thin film을 성장시킬 수 있다. Rare earth silicides 중에서 ytterbium silicide는 가장 낮은 electric work function을 갖고 있어 낮은 schottky barrier 응용에서 쓰이고 있다. 이로 인해, n-channel schottky barrier MOSFETs의 source/drain으로써 주목받고 있다. 특히 ytterbium과 molybdenum co-deposition을 하여 증착할 경우 thin film 형성에 있어 안정적인 morphology를 나타낸다. 또한, ytterbium silicide와 마찬가지로 낮은 면저항과 electric work function을 갖는다. 그러나 ytterbium silicide에 molybdenum을 화합물로써 높은 농도로 포함할 경우 높은 schottky barrier를 형성하고 epitaxial growth를 방해하여 silicide film의 quality 저하를 야기할 수 있다. 본 연구에서는 ytterbium과 molybdenum의 co-deposition에 따른 silicide 형성과 전기적 특성 변화에 대한 자세한 분석을 TEM, 4-probe point 등의 다양한 분석 도구를 이용하여 진행하였다. Ytterbium과 molybdenum을 co-deposition하기 위하여 기판으로 $1{\sim}0{\Omega}{\cdot}cm$의 비저항을 갖는 low doped n-type Si (100) bulk wafer를 사용하였다. Native oxide layer를 제거하기 위해 1%의 hydrofluoric (HF) acid solution에 wafer를 세정하였다. 그리고 고진공에서 RF sputtering 법을 이용하여 Ytterbium과 molybdenum을 동시에 증착하였다. RE metal의 경우 oxygen과 높은 반응성을 가지므로 oxidation을 막기 위해 그 위에 capping layer로 100 nm 두께의 TiN을 증착하였다. 증착 후, 진공 분위기에서 rapid thermal anneal(RTA)을 이용하여 $300{\sim}700^{\circ}C$에서 각각 1분간 열처리하여 ytterbium silicides를 형성하였다. 전기적 특성 평가를 위한 sheet resistance 측정은 4-point probe를 사용하였고, Mo doped ytterbium silicide와 Si interface의 atomic scale의 미세 구조를 통한 Mo doped ytterbium silicide의 형성 mechanism 분석을 위하여 trasmission electron microscopy (JEM-2100F)를 이용하였다.

  • PDF

A Study on the Thermal Degradation Properties of Epoxy Resin for Cast Resin Transformer (몰드변압기용 에폭시 수지의 열 열화특성에 관한 연구)

  • Lim, Kyung-Bum;Nam, Ki-Dong;Kim, Ki-Hwan;Park, Su-Hong;Hwang, Myung-Hwan
    • Fire Science and Engineering
    • /
    • v.22 no.2
    • /
    • pp.44-48
    • /
    • 2008
  • In this paper, we measured a contact angle, surface resistivity and XPS to study the thermal aging characteristics of the epoxy resin for cast resin transformer. As a result of this experiment, we found that the contact angle increases up to $200^{\circ}C$ as it causes a re-crosslinking on the surface, but starts decreasing at $250^{\circ}C$ as it causes heat condensation. As a result of examining the oxygen/carbon peaks through the XPS analysis, we obtained a higher oxygen peak vs. carbon in the first untreated sample, but it showed the opposite trend after heat treatment. That rise in the carbon peak continued up to $200^{\circ}C$, but decreased again at the temperatures above. That's because it kept forming a stable surface structure up to $200^{\circ}C$ but its carbon combination got destroyed due to a rapid oxidization at $250^{\circ}C$. And a conduction path was formed easily with the hydrophile property caused by rapid surface activation.