• Title/Summary/Keyword: contact pressures

Search Result 143, Processing Time 0.023 seconds

Pressure Analysis of Sterntube after Bush Bearing Considering Elastic Deflection of Misaligned Journal and Partial Slope of Bearing Bush (탄성 변형된 저어널의 편심과 베어링 부시의 부분경사를 고려한 선미관 후부 베어링의 압력분포 해석)

  • Choung, Joon-Mo;Choe, Ick-Heung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.6
    • /
    • pp.666-674
    • /
    • 2007
  • It is very important to estimate static squeezing pressure distributions for lining material of sterntube after bearing at dry dock stage since the maximum squeezing pressure value can be one of the significant characteristics representing coming navigation performances of the propulsion system. Moderate oil film pressure between lining material and propulsion shaft is also essential for safe ship service. In this paper, Hertz contact theory is explained to derive static squeezing pressure. Reynolds equation simplified from Navier-Stokes equation is centrally differentiated to numerically obtain dynamic oil film pressures. New shaft alignment technology of nonlinear elastic multi-support bearing elements is also used in order to obtain external forces acting on lining material of bearing. For 300K DWT class VLCC with synthetic bush of sterntube after bearing, static squeezing pressures are calculated using derived external forces and Hertz contact theory. Optimum partial slope of the after bush is presented by parametric shaft alignment analyses. Dynamic oil film pressures are comparatively evaluated for partially bored and unbored after bush. Finally it is proved that the partial slope can drastically reduce oil film pressure during engine running.

Analysis of a Low Friction Piston Seal in Pneumatic Cylinders (공기압 실린더용 저마찰 피스톤 실의 특성해석)

  • Kim, D.T.;Zhang, Z.J.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.8 no.3
    • /
    • pp.21-26
    • /
    • 2011
  • Nonlinear seal friction in pneumatic cylinders can impede the performance of pneumatic systems designed for high precision positioning with favorable high speed actuation. The behaviour of an elastomeric piston seals in high speed pneumatic cylinders is analyzed by nonlinear finite element analysis using ABAQUS. The contact pressures, stress and strain distributions and frictional forces of the squeeze type piston seal are simulated with variation of the seal radial installed interference, the operating pressures, friction coefficients and piston rod velocities. The nonlinear finite element model of the squeeze type piston seal is used to predict deformation of a seal, friction force and contact pressure distributions.

Analysis of Piston Seal in High-Speed Pneumatic Cylinders (고속 공기압 실린더의 피스톤 실 특성 해석)

  • Zhang, Z.J.;Kim, D.T.;Han, S.S.
    • 유공압시스템학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.99-104
    • /
    • 2010
  • Nonlinear seal friction in pneumatic cylinders can impede the performance of pneumatic systems designed for high precision positioning with favorable high speed actuation. The behaviour of an elastomeric piston seal in high speed pneumatic cylinders is analysed by nonlinear finite element analysis using ABAQUS. The contact pressures, stress and strain distributions and frictional forces of the piston seal are simulated with variation of interference fits, supply pressures, friction coefficients and piston rod velocities. The nonlinear finite element model of the piston seal is used to predict deformation of a seal, friction force and contact pressure distributions.

  • PDF

Effect of Kinematic Motion on Changes in Coefficients of Friction of Porcine Knee Joint Cartilage (기구학적 운동이 돼지 무릎 관절연골의 마찰계수 변화에 미치는 영향)

  • Kim, Hwan;Kim, ChoongYeon;Lee, KwonYong;Kim, DaeJoon;Kim, DoHyung
    • Tribology and Lubricants
    • /
    • v.29 no.1
    • /
    • pp.46-50
    • /
    • 2013
  • In this study, the frictional behaviors of articular cartilage against a Co-Cr alloy in two types of kinematic motions were compared. Cartilage pins were punched from the femoral condyles of porcine knee joints, and Co-Cr alloy disks were machined from orthopedic-grade rods and polished to a surface roughness ($R_a$) of 0.002. Friction tests were conducted by using a pin-on-disk-type tribotester in phosphate buffered saline (PBS) under pressures of 0.5, 1, and 2 MPa. All tests were performed in the repeat pass rotational (ROT) and the linear reciprocal (RCP) sliding motions with the same sliding distance and speed of 50 mm/s. The coefficients of friction of the cartilage against the Co-Cr alloy increased with the sliding time in both kinematic motions for all contact pressures. The maximum coefficients of friction in RCP motion were 1.08, 2.82, and 1.96 times those in ROT motion for contact pressures of 0.5, 1, and 2 MPa, respectively. As the contact pressure increased, the coefficients of friction gradually increased in RCP motion, whereas they decrease and then increased in ROT motion. The interaction between the directional change of the shear stress and the orientation of collagen fiber in the superficial layer of the cartilage could affect the change in the frictional behaviors of the cartilage. A large difference in the coefficients of friction between the two kinematic motions could be interpreted as differences in the directional change of shear stress at the contact surface.

Contact Pressure Distribution of Pin Bushing Bearings Depending on the Friction Conditions (마찰조건에 따른 핀부싱 베어링의 접촉면압분포에 관한 연구)

  • Kim, Chung-Kyun;Kim, Do-Hyun
    • Tribology and Lubricants
    • /
    • v.23 no.6
    • /
    • pp.255-260
    • /
    • 2007
  • This paper presents the contact pressure distribution of pin bushing bearings for various lubrication friction modes such as oil film and elastohydrodynamic lubrication contacts, a mixed lubrication contact, a boundary contact, and a dry contact. During a sliding contact of a plain bearing, the boundary and dry rubbing contacts are dominated between a piston pin and a pin bushing bearing. This may come from a micro-scale clearance, an explosive impact pressures from the piston head, and an oscillatory motion of a pin bearing. The computed results show that as the oil film parameter $h/{\sigma}$ is increased from the dry rubbing contact to the oil film lubrication friction, the maximum oil film pressure is radically increased due to an increased viscous friction with a thin oil film thickness and the maximum asperity contact pressure is reduced due to a decreased asperity contact of the rubbing surfaces.

Elastohydrodynamic Lubrication on the Vane Tip of Vane Pump (베인 선단부의 탄성유체윤활)

  • 정석훈;정재연
    • Tribology and Lubricants
    • /
    • v.10 no.3
    • /
    • pp.54-61
    • /
    • 1994
  • The regimes of elastohydrodynamic lubrication at the points where line contacts occur between the vane tip and camring in an oil hydraulic vane pump is studied. A study of the contact conditions in vane pump provided most of the early interest in the possibility of fluid film lubrication in highly loaded contacts. The variation of viscosity with pressure and the elastic deformation associated with the high pressures generated in the contact region are the major causes of the complexity attributed to lubrication behavior. Therefore a numerical solutions to the problem of elastohydrodynamic lubrication of line contact are obtained by using a finite-difference formulation.

Measurement of thermal contact resistance at Cu-Cu interface

  • Kim, Myung Su;Choi, Yeon Suk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.2
    • /
    • pp.48-51
    • /
    • 2013
  • The thermal contact resistance (TCR) is one of the important components in the cryogenic systems. Especially, cryogenic measurement devices using a cryocooler can be affected by TCR because the systems have to consist of several metal components in contact with each other for heat transferring to the specimen without cryogen. Therefore, accurate measurement and understanding of TCR is necessary for the design of cryogenic measurement device using a cryocooler. The TCR occurs at the interface between metals and it can be affected by variable factors, such as roughness of metal surface, contact area and contact pressure. In this study, we designed TCR measurement system at various temperatures using a cryocooler as a heat sink and used steady state method to measure the TCR between metals. The copper is selected as a specimen in the experiment because it is widely used as a heat transfer medium in the cryogenic measurement devices. The TCR between Cu and Cu is measured for various temperatures and contact pressures. The effect of the interfacial materials on the TCR is also investigated.

Analysis of Fluid-Structure Interaction of Cleaning System of Micro Drill Bits (마이크로 드릴비트 세척시스템의 유체-구조 연성해석)

  • Kuk, Youn-Ho;Choi, Hyun-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.1
    • /
    • pp.8-13
    • /
    • 2016
  • The micro drill bit automatic regrinding in-line system is a system that refurbishes drill bits used in a PCB manufacturing process. This system is able to refurbish drill bits with a minimum size of ø0.15-0.075mm that have previously been discarded. Beyond the conventional manual cleaning process using ultrasound, this system adopts a water jet cleaning system, making it capable of cleaning drill bits with a minimum size of ø0.15-0.075mm. This paper analyses various contact pressures applied to the surface of drill bits depending on the shooting pressure of the cleaning device and fluid velocity in order to optimize the nozzle location and to detect structural instability caused by the contact pressures.

Evaluations of Swaging Process for Rotor Core of Induction Motors II (유도전동기 회전자 제작시 압입작업 평가 II)

  • Park, Sang-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.464-469
    • /
    • 2017
  • This study evaluated the displacements of a Cu bar in the Y-direction and the relationship between swaging pressures and total contact forces to increase the productivity of the rotor core swaging process. Elastic-plastic numerical analyses of four different Cu bar shapes were performed with a constant swaging pressure to evaluate the displacements of the Cu bar in the Y-direction and the contact force distributions at the contact surfaces during the swaging process. Based on the numerical analysis results, the following conclusions were obtained. First, a simplified 2-dimensional cyclic symmetric analysis model was developed for the numerical analysis of the rotor core swaging process. Second, the final displacements of the Cu bar in the Y-direction were nearly the same as the change of the Cu bar size at a constant swaging pressure. Third, a linear relationship between the swaging pressures and the total contact forces, the so called resistance forces, was suggested.

Crack-contact problem for an elastic layer with rigid stamps

  • Birinci, Ahmet
    • Structural Engineering and Mechanics
    • /
    • v.37 no.3
    • /
    • pp.285-296
    • /
    • 2011
  • The plane crack-contact problem for an infinite elastic layer with two symmetric rectangular rigid stamps on its upper and lower surfaces is considered. The elastic layer having an internal crack parallel to its surfaces is subjected to two concentrated loads p on its upper and lower surfaces trough the rigid rectangular stamps and a pair of uniform compressive stress $p_0$ along the crack surface. It is assumed that the contact between the elastic layer and the rigid stamps is frictionless and the effect of the gravity force is neglected. The problem is reduced to a system of singular integral equations in which the derivative of the crack surface displacement and the contact pressures are unknown functions. The system of singular integral equations is solved numerically by making use of an appropriate Gauss-Chebyshev integration formula. Numerical results for stress-intensity factor, critical load factor, $\mathcal{Q}_c$, causing initial closure of the crack tip, the crack surface displacements and the contact stress distribution are presented and shown graphically for various dimensionless quantities.