• Title/Summary/Keyword: contact pressure distribution

Search Result 273, Processing Time 0.023 seconds

Flash Temperature Analysis on the Contact Surfaces between Cam and Roller-Follower Mechanism (캠과 롤러 종동자 기구의 접촉표면 순간온도 해석)

  • Koo, Young-Pil;Kim, Min-Nam;Kim, Nam-Shik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.2
    • /
    • pp.86-94
    • /
    • 2004
  • The flash temperature distribution on the contact surfaces between cam and roller-follower mechanism was analysed numerically. The elasto-hydrodynamic lubrication pressure and film thickness were used to get the accurate analysis results. The temperature distribution was obtained by numerical integration by making use of Carslaw and Jaeger's formulation to the whole contact surfaces. The maximum flash temperature was increased with both the increasing slip ratio of the contact surface and increasing external load Profile of the temperature distribution was affected by the sliding velocity of the surface.

  • PDF

Performance Analysis of Urethane Packing in the Hydraulic Breaker by a Finite Element Method (유한요소해석을 이용한 유압브레이커용 우레탄 패킹의 성능분석)

  • Shin, Hyun Woo;Hong, Jong Woo;Choi, Yi Kwang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.2
    • /
    • pp.139-147
    • /
    • 2016
  • Performances of urethane packing in the hydraulic breaker were analyzed using a finite element method. Because of high temperature and high pressure in the hydraulic breaker, it is better to use urethane rather than rubber as a packing material. We obtained the physical properties of urethane at elevated temperature by the tensile test. We analyzed buffer seal and U-packing maintaining the pressure and preventing oil leakage. Deformation, stress distribution, contact length, contact pressure of packing at each pressure step were obtained using finite element analysis. As the temperature increases, stress and contact force tend to decrease at low pressure. As the gap between piston and cylinder increases, contact length and contact forces decrease. Consequently, it is possible to design the packing section using these analyses, and construct a system to predict the possibility of oil leakage in the hydraulic breaker.

Pressure Analysis of the Plantar Musculoskeletal Fascia Using a Fine Finite-Element Model (인체 족부 근골격계 상세 유한요소모델링을 통한 족저압 해석)

  • Jeon, Seong-Mo;Kim, Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1237-1242
    • /
    • 2011
  • The A detailed 3D finite-element analysis model of a human foot has been developed by converting CT scan images to 3D CAD models in order to analyze the distribution of plantar pressure. The 3D foot model includes all muscles, bones, and skin. On the basis of this model and the pressure distribution results, shoes for diabetes patients, which can make the plantar pressure distribution uniform, may be designed through finite-element contact analysis.

Plantar Pressure Distribution During Level Walking, and Stair Ascent and Descent in Asymptomatic Flexible Flatfoot

  • Kim, Jeong-Ah;Lim, One-Bin;Yi, Chung-Hwi
    • Physical Therapy Korea
    • /
    • v.20 no.4
    • /
    • pp.55-64
    • /
    • 2013
  • The first purpose was to identify the plantar pressure distributions (peak pressure, pressure integral time, and contact area) during level walking, and stair ascent and descent in asymptomatic flexible flatfoot (AFF). The second purpose was to investigate whether peak pressure data during level walking could be used to predict peak pressure during stair walking by identifying correlations between the peak pressures of level walking and stair walking. Twenty young adult subjects (8 males and 12 females, age $21.0{\pm}1.7$ years) with AFF were recruited. A distance greater than 10 mm in a navicular drop test was defined as flexible flatfoot. Each subject performed at least 10 steps during level walking, and stair ascent and descent. The plantar pressure distribution was measured in nine foot regions using a pressure measurement system. A two-way repeated analysis of variance was conducted to examine the differences in the three dependent variables with two within-subject factors (activity type and foot region). Linear regression analysis was conducted to predict peak pressure during stair walking using the peak pressure in the metatarsal regions during level walking. Significant interaction effects were observed between activity type and foot region for peak pressure (F=9.508, p<.001), pressure time integral (F=5.912, p=.003), and contact area (F=15.510, p<.001). The regression equations predicting peak pressure during stair walking accounted for variance in the range of 25.7% and 65.8%. The findings indicate that plantar pressures in AFF were influenced by both activity type and foot region. Furthermore the findings suggest that peak pressure data during level walking could be used to predict the peak pressure data during stair walking. These data collected for AFF can be useful for evaluating gait patterns and for predicting pressure data of flexible flatfoot subjects who have difficulty performing activities such as stair walking. Further studies should investigate plantar pressure distribution during various functional activities in symptomatic flexible flatfoot, and consider other predictors for regression analysis.

The Effect of the Wedge Insole Angle of Supinated Group on Foot Contact Time, Foot Contact Area and Foot Pressure (회외족의 Wedge Insole 각에 따른 보행 시 접지 시간, 접지면적 및 족저압력의 비교)

  • Lee, Hyo-Taek;Kim, Yong-Jae
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.22 no.4
    • /
    • pp.508-515
    • /
    • 2010
  • This study was conducted on male college students with supinated foot to measure the foot pressure by having them wear three kinds of wedge insoles ($0^{\circ}$, $3.5^{\circ}$, $7^{\circ}$). Foot contact time, foot contact area, peak pressure and mean pressure were measured using a foot pressure distribution measuring instrument. And the surface of the foot sole was divided into 10 areas. Regarding foot contact time, there was no statistically significant difference by showing $0.69{\pm}0.004$ seconds at $3.5^{\circ}$ and $0.68{\pm}0.006$ seconds at $0^{\circ}$ and $7^{\circ}$. Regarding the foot contact area, it appeared broad in the inside area of the foot according to wedge insole, and there was statistically significant difference in the area 1 of the rear foot(p< .01) and the area 3 of the middle foot(p< .05). The peak pressure by foot area decreased in the outside of the foot according to wedge insole, while increasing in the inside of the foot. Among the areas, there was statistically significant in the area 2 of the rear foot (p< .01) and the area 3 of the middle foot (p< .05). Regarding the mean pressure by foot area, the pressure roughly increased in the inside area of the foot according to wedge insole, while decreasing in the outside of the foot.

Sub-surface Stress Analysis beneath the Contact Surface of Spur Gear Teeth (스퍼 기어 접촉 치면의 내부응력 해석)

  • Kwang-Jin, Lee;Hyung-Ja, Kim
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.3
    • /
    • pp.64-70
    • /
    • 2004
  • The sub-surface stress field beneath the spur gear's contact surface in lubricated condition has been analysed. The surface pressure was obtained by the elasto-hydrodynamic lubrication analysis using the accurate geometric clearances around the contact region of the teeth. The sub-surface stress field was calculated by using the Love's rectangular patch solution. The analysis results show that the sub-surface stress distribution is quite dependent on the surface pressure distribution. The pattern of sub-surface stress field is similar to that of the external load. The depth where the maximum effective stress occurs is not proportional to the intensity of the external load.

  • PDF

The Characteristics of Foot Pressure Distribution According to Walking Speeds of Normal Gait and Ground Inclinations (정상 보행의 속도와 경사에 따른 족저압 분포의 특성)

  • Hong, Wan-Sung;Kim, Gi-Won
    • Journal of Korean Physical Therapy Science
    • /
    • v.11 no.4
    • /
    • pp.29-37
    • /
    • 2004
  • Measurements of plantar pressure provide an indication of foot and ankle function during gait and other functional activities because the foot and ankle provide necessary support and flexibility for weight bearing and weight shifting while people are performing these activities. Plantar pressure is being increasingly used in both research and clinical practice to measure the effects of various footwear and physical therapy intervention. The influence of walking speed and ground inclination on plantar pressure parameters However has not been evaluated in detail. So, in this study to determine the effect of changes in walking speed and ground inclination on plantar pressure treadmills with different walking speeds and inclination were used. Plantar pressure parameters were measured with the Parotec system using the walking and running in 20 healthy participants(10 male, 10 female) aged $20{\sim}28$(mean 22.22, S.D.2.26 years) when slow walking and running. The result of this study with increased die walking speed, the peak pressure of 1st, 5th metatarsal head and total contact time and impulse total at the forefoot was affected by walking speed; however, die peak pressure, contact time and impulse total at the forefoot was not affected by ground inclination.

  • PDF

The Comparison of Plantar Pressure on Double Limb Support and Single Limb Support according to Soft Surface (연성면에 따른 양발지지와 한발지지 시 족저압 비교)

  • Lee, Jeon-Hyeong;Chung, Hyeung-Jae;Kim, Shin-Gyun
    • PNF and Movement
    • /
    • v.11 no.2
    • /
    • pp.95-102
    • /
    • 2013
  • Purpose : The purpose of this study was to investigate a plantar pressure distribution and the trajectory of the center of pressure on double limb support and single limb support according to level surface, air cushion, and aero step. Methods : 21 healthy adults participated in this study. The plantar pressure were assessed at three different surface conditions(on the level surface, air cushion, and aero step) on double limb support and single limb support. Testing orders were selected randomly. Results : Plantar pressure distribution show a significant difference contact area 1 and contact area 3 on double limb support and single limb support. The trajectory of the center of pressure show an significant difference anteroposterior(AP), mediolateral(ML), and total displacement on double limb support and single limb support. Conclusion : Through the use of soft surface as air cushion and aero step will be using the ankle strategy. This will be to strengthen the muscles around the ankle. Consequently, should help to improve stability and coordination.

Plantar Pressure Distribution Characteristics of Hallux Valgus (엄지 발가락외반증환자의 발바닥 압력분포 특성)

  • 김영호;박시복;양길태;임송학;이강목;문무성
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.4
    • /
    • pp.439-446
    • /
    • 1997
  • We undertook this study to determine the plantar pressure distribution characteristics of hallux valgus, major increasing foot disease. Twenty three valgus Patients were evaluated with clinical examinations, radiologic studies and dynamic plantar pressure distribution measurements. The present study also suggested a masking method for detailed analyses on plantar pressure distribution measurements. With higher grade of hallux valgus, pressure, contact area, and impulse on metartasus are significantly increased Pressure concentration is very important in foot diseases and an approximate plantar pressure distribution should be considered on any shoe design.

  • PDF

A Study on the Surface Temperature Rise in Spur Gear Part I - Flash Temperature (Spur Gear의 표면온도상승에 관한 연구 Part I - Flash Temperature)

  • 김희진;문석만;김태완;구영필;조용주
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.251-257
    • /
    • 2000
  • A numerical simulation of the temperature rise for sliding surface in dry contact is based on Jaeger's formula combined with a calculated heat input. A gear tooth temperature analysis was performed. The pressure distribution has the Hertzian pressure distribution on the heat source. The heat partition factor is calculated along line of action. A Temperature distribution of tooth surface is calculated about before and after profile modification. A Temperature of addendum and deddendum in modified gear have reduced.

  • PDF