• Title/Summary/Keyword: contact dynamics

Search Result 379, Processing Time 0.027 seconds

The Design and Control of Contact-free Magnetic Suspension System with Four Degrees of Freedom (4자유도 비접촉 자기 서스펜션 기구의 설계 및 제어)

  • Lee, Sang-Heon;Baek, Yoon-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.6
    • /
    • pp.871-878
    • /
    • 2003
  • With the development of micro -technology, the demand for micro actual ing device is increasing. But, it is difficult to achieve high resolution and wide bandwidth with the conventional contact systems. So, the contact-free systems which are suspended or levitated by magnetic force or air bearing were proposed. These systems can be applied to high precision stages and alignment apparatuses. This paper describes a magnetically suspended system with four degrees of freedom which are composed of three rotations (roll, pitch, yaw), and one translation ( z). The operating principle and the structure of the system are similar to variable reluctance type electric machines. In this study, the force analysis is executed using magnetic circuit and virtual work principle, and the equations that describe the dynamics of the system are presented. The multivariable PID controller is adapted to the system and the experiment is executed.

Impact Force Roconstruction and Impact Model Identification Using Inverse Dynamics of an Impacted Beam (역동역학을 이용한 충격을 받는 보의 충격력 복원 및 충격모델의 변수 파악)

  • 박형순;박윤식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.623-630
    • /
    • 1995
  • The impulse response functions (force-strain relations) for Euler-Bernoulli and Timoshenko beams are considered. The response of a beam to a transverse impact force is numerically obtained with the convolution approach using the impulse response function obtained by Laplace transform. Using this relation, the impact force history is determined in the time domain and results are compared with those from Hertz's contact law. The parameters of timpact force model are identified using the recovered force and compared with the Hertz's contact model. In order to verify the proposed algorithm, measurements were done using an impact hammer and a steel ball drop test and these results are also compared with the simulated values.

Analysis of Dynamic Characteristics of a HDD Spindle System Supported by Ball Bearing Due to Temperature Variation (온도 변화에 따른 HDD 회전축계 동특성 해석)

  • 김동균;장건희;한재혁;김철순
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.10
    • /
    • pp.805-812
    • /
    • 2003
  • This paper presents a method to investigate the characteristics of a ball bearing and the dynamics of a HDD spindle system due to temperature variation. Finite element model is developed for the rotating and stationary parts of a HDD spindle system separately to determine their thermal deformations by using ANSYS, a finite element program. Then, the relative position of the rotating part with respect to the stationary part is determined by solving the equilibrium equation of the contact force between upper and lower ball bearings. The validity of the proposed method is verified by comparing the theoretical natural frequencies of a HDD spindle system with the experimental ones before and after temperature variation. It shows that the elevated temperature results in the increase of contact angle and the decrease of bearing deformation, contact force and bearing stiffness, which result in the decrease of the natural frequencies of a HDD spindle system.

Robust Hybrid Position/Force Control of a PUMA-Like Robot Manipulator (PUMA형 로보트 머니플레이터의 강인한 위치/힘 혼합제어)

  • Park, Jae-Wook;Lee, Gun-Bok
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.575-578
    • /
    • 1995
  • In general, the control of robot manipulator is classified into position control and force control. Position controllers give adequate performance when a manipulator is following a trajectory through space and end-effector has no contact with environment. However for most tasks performed by robot manipulator in industry, contact is made between the end-effector and manipulator's environment, so position control may not suffice. The objective of this study is to control both position of a manipulator and the contact forces generated at the hand by using a conceptually simple control law. Position and force control problem is decoupled into subtasts via taskspace formulation and inverse dynamics. Then, the position controllers are designed for the task space variable which represent tangent motion and the forte controllers are designed for the lash space variables which represent normal force.

  • PDF

A Comparison of the Direct Shear Test and Shear Simulation Based on the Discrete Element Method (직접전단시험과 이산요소법에 기반한 전단 시뮬레이션과의 비교)

  • Jung, Sung-Heon;Sohn, Jeong-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.3
    • /
    • pp.86-91
    • /
    • 2020
  • An important factor of rough road modeling is analyzing the shear behavior properties of the rough road. These properties influence the drawbar pull of the tool when interacting with the soil used in agriculture. Furthermore, shear behavior properties are important because sinkage and shear stress are generated when wheels drive on rough roads. In this study, we performed a direct shear test to investigate the shear behavior properties of soils and compare with the direct shear simulation; shear force derived by the coupled analysis of discrete element method; and multi-body dynamics. Soil contact parameters were measured in a wheel and soil contact simulation followed by comparison of the simulated and experimentally measured shear force.

A Case of Syphilis which is Thought to be Infected by the Abnormal Imposition of Hands on a Child (비정상적인 안수 기도로 감염되었다고 사료되는 매독 1례)

  • Choe, Jeong Hoon;Shin, Young Kyoo;Eun, Baik Lin
    • Pediatric Infection and Vaccine
    • /
    • v.5 no.1
    • /
    • pp.143-146
    • /
    • 1998
  • Syphilis is a systemic communicable disease caused by the motile spirochete, Treponema pallidum, which is only a natural pathogen for human. The distribution and trends of syphilis are influenced by biologic factors, sexual behaviors, biomedical technology, availability of and access to health care, public health efforts, changes in population dynamics, and sociocultural factors. Although sexual contact is the main route of transmission, Treponema pallidum may also be infected through direct contact with syphilitic lesions, blood transfusion, ingestion of menstrual blood or vaginal secretions, or transplacental transmissions. In extremely unusual circumstances, infection by means of contact with a skin lesion and human bite have been reported. We experienced a case of syphilis which is thought to be infected by the abnormal imposition of hands on a child, which caused unnecessary erosive trauma with fingernails.

  • PDF

The research on wear simulation between wheel and rail at inclined of Korea High Speed Railway (경사선로에서의 차륜과 레일간 상호작용에 따른 마모 현상 연구)

  • Moon Tai-Seon;Seo Bo-Pil;Choi Jeung-Hum;Han Dong-Chul
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.112-117
    • /
    • 2003
  • The purpose of this work is to general approach to numerically simulating wear in rolling and sliding contact area between wheel and rail interface based on the analysis of dynamics with general MBS package. A simulation scheme is developed that calculates the wear at a detailed level. The estimation of material removal follows Archard's wear equation which states that the reduction of volume is linearly proportional to the sliding distance, the normal applied load and the wear coefficient and inverse proportional to hardness. The main research application is the wheel-rail contact of Korea High Speed Railway.

  • PDF

Molecular Dynamics Simulation Study on the Wetting Behavior of a Graphite Surface Textured with Nanopillars

  • Saha, Joyanta K.;Matin, Mohammad A.;Jang, Jihye;Jang, Joonkyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1047-1050
    • /
    • 2013
  • Molecular dynamic simulations were performed to examine the wetting behavior of a graphite surface textured with nanoscale pillars. The contact angle of a water droplet on parallelepiped or dome-shaped pillars was investigated by systematically varying the height and width of the pillar and the spacing between pillars. An optimal inter-pillar spacing that gives the highest contact angle was found. The droplet on the dome-covered surface was determined to be more mobile than that on the surface covered with parallelepiped pillars.

Analysis of Dynamic Characteristics of a HDD Spindle System Supported by Ball Bearing Due to Temperature Variation (온도 변화에 따른 HDD 회전축계 동특성 해석)

  • 김동균;장건희;한재혁;김철순
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.578-584
    • /
    • 2003
  • This paper presents a method to investigate the characteristics of a ball bearing and the dynamics of a HDD spindle system due to temperature variation. Finite element model is developed fer the rotating and stationary parts of a HDD spindle system separately to determine their thermal deformations by using ANSYS, a finite element program. Then, the relative position of the rotating part with respect to the stationary part is determined by solving the equilibrium equation of the contact force between upper and lower ball bearings. The validity of the proposed method is verified by comparing the theoretical natural frequencies of a HDD spindle system with the experimental ones before and after temperature variation. It shows that the elevated temperature results in the increase of contact angle and the decrease of bearing deformation, contact force and bearing stiffness, which result in the decrease of the natural frequencies of a HDD spindle system.

  • PDF

The study on wheel wear analysis in UIC60 and KS50N of Korea High Speed Railway (한국형 고속철도의 전용선과 기존선의 차륜 마모 특성 연구)

  • Kim Youn-Jung;Choi Jeong-Heum;Han Dong-Chul;Kim Young-Gukk
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.1115-1120
    • /
    • 2005
  • characteristic of wear between wheel and rail is important factor of judgement to maintenance. KHST is optimized on an exclusive rail, UIC60. but also KHST is running on the variety existing line as well as KS50N, KS60 et,c. Hail profile of KS50N is dissimilar to DIC60. So we can predict that characteristic of wear is embodied also different. In this paper. we deduced the force and point of contact position between wheel and rail through multi-dynamics analysis and predicted wear of wheel and rail through contact problem analysis. we used simplified theory of kallker on contact problem, and Predicted the wear phenomenon of wheel using archard wear equation about each condition.

  • PDF