• Title/Summary/Keyword: construction waste soil

Search Result 158, Processing Time 0.024 seconds

Dynamic Shear Behaviors on the Normally Consolidation Clay-Geosynthetic Interface (토목섬유-정규압밀점토의 접촉면 동적 전단거동 평가)

  • Bae, Hyogon;Jang, Dongin;Kwak, Changwon;Park, Innjoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.12
    • /
    • pp.33-39
    • /
    • 2018
  • In this study, important characteristics were identified for the Geosynthetic-soil interface using overburden pressure and saltwater and fresh water to evaluate silt shear behavior of the Geosynthetic-soil interface. In addition, waste landfill can secure spaces for waste disposal in the sea and this spaces can be used for additional facilities which will be necessary in the future. Analysis of behavior characteristics on interface of Geosynthetic-soil shows that, if analyzed using standard consolidometers, the consolidation stress of fresh water increased significantly more than saltwater. When analyzed using cyclic shear apparatus, saltwater and freshwater in both conditions, the displacement value increases as the wire gauges become closer to the lower module, and the shear fracture tends to occur radically under saltwater conditions than fresh water. Therefore, seawater, fresh water that act on the interface of geosynthetic-soil, and installation of facility using geosynthetic should be considered as important parameters that are essential for the dynamic design factor of the water controlling facility.

Survey on the Recycling of Waste Slag Generated by Smelting Reduction of Deep-Sea Manganese Nodules (망간단괴 용융환원 폐슬래그의 재활용 방안)

  • Park, Hyungkyu;Nam, Chulwoo;Kim, Sungdon
    • Resources Recycling
    • /
    • v.23 no.4
    • /
    • pp.69-74
    • /
    • 2014
  • Slags generated in the smelting reduction of deep sea manganese nodule could be utilized as an additional materials for making Fe-Si-Mn alloys by mixing with cokes and re-smelting at an arc furnace. In this re-melting process slag is also generated, and the secondary slag is treated as waste. In this survey, recycling of the waste slag of Mn nodule was studied. It is tried to utilize the waste slag as ceramic materials or construction materials. However, it is difficult to use the waste slag directly as an additional material to ceramics such as portland cement or castable refractory material due to the much difference of chemical compositions. As an altercation road constructing material is considered, and toxicity on the soil of the waste slag was tested according to Korean Standard for testing permissible amount of toxic substances. The test result was satisfied with the requirements on the standard. So, it should be suggested that the waste slag of the Mn nodule could be utilized as constructing materials such as road filler or base materials.

Field Applicability Assessment of Controlled Low Strength Material for Sewer Pipe using Excavated Soil (굴착토를 활용한 유동화 채움재의 현장 적용성 평가)

  • Kim, Young-Wook;Lee, Bong-Chun;Jung, Sang-Hwa
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.349-357
    • /
    • 2019
  • Controlled low strength material(CLSM) has been developed using variety of material such as excavated soil, industrial by-product and industrial waste. But theses research limited at laboratory test and failed at commercialization. So in this paper evaluates CLSM used excavated soil characteristics such as flowability, bleeding rate, early strength for following process and 28day strength for re-excavatability. Also, various mix proportion of CLSM by water-binder ratio and soil-binder ratio were evaluated in laboratory. And derive the optimized CLSM mix proportion for using at field application test by movable batch plant. After applying CLSM at trench, evaluate core sample strength and excavatability by shovel, pickax and excavator for verify re-excavation. Furthermore, measure the level change after casting CLSM to inspect subsidence stability. As results of these assessments, not only confirmed the characteristics of CLSM at field but the fillability around pipe and subsidence stability.

Dynamic Relative Displacement of Geosynthetic-Soil Interface Considering Chemical Effect (화학적 영향을 고려한 토목섬유-지반 접촉면의 동적상대변위)

  • Kwak, Chang-Won;Oh, Myoung-Hak;Jang, Dong-In;Park, Inn-Joon
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.11
    • /
    • pp.73-81
    • /
    • 2016
  • Recently, the construction of onshore waste landfill sites has been studied due to the increase of waste and geosynthetics are widely utilized to enforce and protect waste landfill. Geosynthetics comprises the interface with soil and the seismic behavior and stability mostly depend on the dynamic shear behavior of the geosynthetic-soil interface. Therefore, the understanding of dynamic shear behavior and dynamic relative displacement of the interface is critical. The dynamic shear behavior of the interface is affected by surrounding conditions and loading and shows very complicated response, and, it is difficult to study theoretically. In this study, laboratory test to investigate dynamic relative displacement is performed under chemical condition. Dynamic interface apparatus is utilized and cyclic simple shear tests are conducted under short term (60 days of submerging period) and long term (840 days of submerging period) conditions. Consequently, relative displacement of the interface shows the largest values under acid condition, which means more severe damage of the interface.

Estimation on Bearing Capacity of Waste Landfill Reinforced by Geosynthetics Using Numerical Analysis (수치해석에 의한 토목섬유 보강 폐기물 매립지반의 지지력 평가)

  • Shin, Eunchul;Park, Jeongjun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.2
    • /
    • pp.67-74
    • /
    • 2008
  • Many industrialized countries of the world have many problems about the reuse of waste landfill area because of the increase of terminated waste disposal landfill. Especially, the effective use of the terminated waste disposal landfill nearby the urban area has been demanded, because of the lack of the usable land. However, in case of the construction of the building on such a landfill, ground settlement and reduced bearing capacity would be occurred without ground stabilization and proper reinforcement. This study is to evaluate the applicability of geosynthetics for the increment of bearing capacity of solid waste landfill ground. A numerical simulation has been undertaken to model a layer of weathered soil overlaying a layer of geosynthetic reinforcement and waste disposal ground. The proposed analytical model can be used to obtain surface settlement characteristic in the two-dimensional deformation related reinforcement.

  • PDF

Pollution Characteristics of Leachate and Underground Soil of the Landsfill Site and Possibilities of Landfill Site using Clay Layer of the Sea Shore (일반폐기물 매립장의 침출수에 의한 하부토양의 오염과 해안점토층을 이용한 폐기물 매립장의 건설 가능성)

  • 이병호;전옥수
    • Journal of Environmental Science International
    • /
    • v.7 no.3
    • /
    • pp.383-392
    • /
    • 1998
  • Pollution characteristics of leachate and underground soul of the two landfill states were Investigated Domestic wastes were dumped In the two adjacent landfill states. Only small portion of S landifill site was filled with domestic wastes at the first stage of dumping, and most portion of the site was filled with construction wastes. However Y landfill strate was filed with mostly domestic wastes. Higher concentrations of organic pollutants including VOCs were measured In Y landfill site leachate than In S tendon site. Underground souls of the two linam states were analyzed by the two kinds of leaching methods, KEP (Korean Extraction Processl and Acid Digestion. Underground souls of the both landfill states were not polluted by leachates. Underground soils of the two were composed of firie salty material. Thus It Is fecund that fine silty soul layer of the sea shore may be used as a landfillsite.

  • PDF

STABILIZATION AND RECLAMATION OF OLD LANDFILL DISPOSAL SITES

  • Kemper P.E., Charles C.
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1996.12a
    • /
    • pp.87-95
    • /
    • 1996
  • The stabilization and reclamation of old disposal sites is becoming more important as significant numbers of disposal sites are closed and abandoned. This technical paper covers an overview of the key issues and methodologies for stabilizing and constructing facilities on old landfills. The slide portion of this presentation also include photographs showing actual construction activities. The key issues that are prevalent in remediating and closing old landfills are : correcting the stormwater flow, leachate breakout, constructing cover caps, controlling landfill gas migration and odors, cleanup groundwater and stabilizing side slopes. Some key techniques for constructing facilities on old landfills include: use of piling, installation of active landfill gas systems, providing LFG barriers under buildings, using utilidors and flexible utility interfaces and designing for site settlement. This Paper provides proven conceptual methods for solving these problems.

  • PDF

CONTAMINANT LEACHABILITY FROM UTILIZED WASTES IN GEOSYSTEMS

  • Inyang Hilary I.
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.10a
    • /
    • pp.5-21
    • /
    • 2005
  • Urbanization rates of population range from about 1% in the developed countries to about 4% in developing countries. For a global population that may reach 10 billion within the next 40 years, pressure has arisen for an increase in the large-scale use of wastes and byproducts in construction. Ironically, most of the wastes that need to be recycled are generated in large cities where the need for constructed facilities to serve large population is high. Waste and recycled materials (WRM) that are used in construction are required to satisfy material strength, durability and contaminant teachability requirements. These materials exhibit a wide variety of characteristics owing to the diversity of industrial processes through which they are produced. Several laboratory-based investigations have been conducted to assess the pollution potential and load bearing capacity of materials such as petroleum-contaminated soils, coal combustion ash, flue-gas desulphurization gypsum and foundry sand. For full-scale systems, although environmental pollution potential and structural integrity of constructed facilities that incorporate WRM are interrelated, comprehensive schemes have not been developed for integrated assessment of the relevant field-scale performance factors. In this presentation, a framework for such an assessment is proposed and presented in the form of a flowchart. The proposed scheme enables economic, environmental, worker safety and engineering factors to be addressed in a number of sequential steps. Quantitative methods and test protocols that have been developed can be incorporated into the proposed scheme for assessing the feasibility of using WRM as partial or full substitutes for earthen highway materials in the field.

  • PDF

Estimation of Resident Support Fund Regarding Types of Environmental Foundational Facilities - Focus on Gangwon Provincial Government - (환경기초시설별 주민지원금 산정방안 - 강원도 중심으로 -)

  • Choi, Yong-Bum;Lee, Hae-Seung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.9
    • /
    • pp.905-910
    • /
    • 2006
  • This research is conducted to calculate optimum residents grant regarding types of environmental foundational facilities. In the case of Gangwon province, it was particularly referred in this study, the residents grant of waste treatment facilities was excessively discharged as $1.6{\sim}75.0%$ of construction cost. This kind of excessive residents grant has overweighted the local governments' financial conditions. Accordingly, it is necessary to increase the amount of charge on the national treasury. In the calculation method of optimum residents grant reasonable resident support fund of waste treatment facilities was computed the range of 20%, food waste treatment facilities was 10% ranges and sewage and night soil combination treatment facilities was $3{\sim}5%$ ranges.

An Engineering Characteristics of Weathered Granite Soil-Bentonite Mixtures (화강풍화토-벤토나이트 혼합토의 공학적 특성)

  • Kim, Daeman;Kim, Kiyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.6
    • /
    • pp.45-56
    • /
    • 2006
  • Recently, the more potential waste sites are being required as increasing the demand of better human life. But the construction of waste disposals has many restrictions because of lack of good quality clay and high cost of liners. So, in this study, we studied the liner materials to develop more cheaper soil liner that can be satisfied the environmental criterion for the coefficient of permeability and shear strength. A series of compaction test and triaxial (consolidation, permeability, and shear) tests were performed to obtain the optimized weight ratio of Bentonite-Soil mixture (B/S) including the least amount of bentonite. A series of soil tests were performed to acquire the appropriate weathered granite soil-bentonite mixture that is satisfied the environmental criterion of soil liner($k=1{\times}10^{-7}cm/sec$). At first, weathered granite soils were classified with four different particle-size soils, and B/S ratio was increased as 5% step for each particle-size. The test results showed that in case of weathered granite soil passing through No. 100 sieve, B/S=15% satisfied the soil liner criterion. The measured coefficient of permeability and the Chapuis's two equations were also compared. And a predicting equation for the coefficient of permeability was suggested, which is suitable for the mixture soil with the B/S ratio used in this study. The optimal weight ratio for the mixture soils used in this study was 15% in the both cases of permeability and shear strength.

  • PDF