• Title/Summary/Keyword: construction material

Search Result 5,025, Processing Time 0.033 seconds

An Evaluation on Adhesive Weight of Incoming Salt by Paint used for Finishing Material of Steel (강재의 마감재로 사용된 도료별 비래염분 부착량 평가)

  • Cho, Gyu-Hwan;Lee, Young-Jun;Kim, Woo-Jae;Park, Dong-Cheon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.177-178
    • /
    • 2013
  • Steel structures of the seaside area are naturally led to surface corrosion due to incoming salt. Signature measures for this are to replace steel with steel material with a high corrosion-resistance and to block salt and other deteriorative factors beforehand through finishing work such as surface coating. However, the variety in steel materials, finishing type, and construction methods makes adhesive weight of incoming salt different depending on each type. For this research, measurement results derived from an enhancement experiment on artificial incoming salt adhesive to 4 steel finishing types and 2 material types identified a difference of adhesive weight by each sampler.

  • PDF

A Experimental Study on the Performance Test of Water Leakage Repair Materials for Water Expansion Acrylic Resin (아크릴 수지계 수팽창성 누수보수재의 재료적 성능평가에 관한 실험적 연구)

  • Hong Chae Han;Kim Su-Ryon;Kwak Kyu-Sung;Oh Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.51-56
    • /
    • 2005
  • It does not find for solution by limitation of technological mechanism of existent of leakage maintenance material. So, it is paid for huge expense because continuous repeat maintenance work is consisting. Furthermore, it is indicated by big problem in construction work that is constructed by field experience that thing by definite and systematic theory is not with proper performance test and analysis up to now. Therefore, wish to measure physical performance change by various environment condition maintenance of structure and performance construction work aspect in that apply to water leakage maintenance material using of acrylic resin system water expansion, leakage maintenance material in this research, and present suitable form of construction work under these environment. also, wish to ready diversified remedy by oversea market opening.

  • PDF

Suggestion for sustainable development of Korean traditional wooden Structure (Hanok)

  • Lee, Yunsub;Jin, Zhenhui;Seo, Nuri;Jung, Youngsoo
    • International conference on construction engineering and project management
    • /
    • 2017.10a
    • /
    • pp.159-166
    • /
    • 2017
  • Recently, the wooden structure has been revived again as an eco-friendly structure technique. It is the counterattack of the wood material, which has become more recognized as a finishing material pushed by the concrete material in the rapid growth after the Industrial Revolution. However, it is difficult to conclude that this is a tendency of the construction market in the whole country. Perhaps this is a tendency to appear more strongly in Korea. It could be seen by comparing the characteristics of the overseas construction market with Korean's and the advanced constructed case of large-scale wooden structures in overseas. National wooden buildings show own characteristics such as construction methods, materials, and member dimensions of wood structures by country, which could be seen as a result of continuously developing their own technology. However, in Korea, despite its unique wooden structure and technology (Hanok; Korean traditional housing), it has not been developed continuously and treated it only as a living building exhibit. This is evidenced by the fact that only one percent of the building is constructed with traditional wooden building technology. Therefore, there are various efforts to modernize the traditional wooden structure technology, but it still does not reach the level of advanced wooden technology abroad. The characteristics of the Korean wooden building market were analyzed in order to suggest ways to develop the Korean wood structure technology. The characteristics of Hanok construction were analyzed through quantitative criteria to define the main development tasks for Hanok development to propose the long-term development path.

  • PDF

A DEVELOPMENT OF INTELLIGENT CONSTRUCTION LIFT-CAR TOOLKIT DEVICE FOR CONSTRUCTION VERTICAL LOGISTICS MANAGEMENT

  • Chang-Yeon Cho;Soon-Wook Kwon;Tae-Hong Shin;Sang-Yoon Chin;Yea-Sang Kim;Joo-Hyung Lee
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.242-249
    • /
    • 2009
  • High-rise construction sites, especially those situated in spatially constrained urban areas, have difficulties in timely delivery of materials. Modern techniques such as Just-in-time delivery, and use of information technology such as Project Management Information System (PMIS), are targeted to improve the efficiency of the logistics. Such IT-driven management techniques can be further benefited from state-of-the-art devices such as Radio Frequency Identification (RFID) tags and Ubiquitous Sensor Networks (USN), which has resulted in notable achievements in automated logistics management at the construction sites. Based on those achievements, this research develops USN hardware toolkits for construction lifts, which aims to be automated the vertical material delivery by sensing the material information and routing it automatically to the right place. The gathered information from the sensors can also be used for monitoring the overall status. The developed system will be tested in the actual high-rise construction sites to assess the system's feasibility. The proposed system is being implemented using Zigbee communication modules and RFID sensor networks which will communicate with the intelligent palette system (previously developed by the authors). To support the system, a lift-mountable intelligent toolkit is under development. Its feasibility test will be conducted by applying the implemented system to a test bed and then analyzing efficiency of the system and the toolkit. The collected test data will be provided as a basis of autonomous vertical transport equipment development. From this research, efficient management of the material lift is expected with increased accuracy, as well as better management of overall construction schedule benefited from the system. Further research will be expected to develop a smart construction lift, which will eliminate the need for human supervision, thus enabling a real 'autonomous' operation of the system.

  • PDF

Potential use of local waste scoria as an aggregate and SWOT analysis for constructing structural lightweight concrete

  • Islam, A.B.M. Saiful;Walid, Walid;Al-Kutti, A.;Nasir, Muhammad;Kazmi, Zaheer Abbas;Sodangi, Mahmoud
    • Advances in materials Research
    • /
    • v.11 no.2
    • /
    • pp.147-164
    • /
    • 2022
  • This study aims to investigate the influence of scoria aggregate (SA) and silica fume (SF) as a replacement of conventional aggregate and ordinary Portland cement (OPC), respectively. Three types of concrete were prepared namely normal weight concrete (NWC) using limestone aggregate (LSA) and OPC (control specimen), lightweight concrete (LWC) using SA and OPC, and LWC using SA and partial SF (SLWC). The representative workability and compressive strength properties of the developed concrete were evaluated, and the results were correlated with non-destructive ultrasonic pulse velocity and Schmidt hammer tests. The LWC and SLWC yielded compressive strength of around 30 MPa and 33 MPa (i.e., 78-86% of control specimens), respectively. The findings indicate that scoria can be beneficially utilized in the development of structural lightweight concrete. Present renewable sources of aggregate will preserve the natural resources for next generation. The newly produced eco-friendly construction material is intended to break price barriers in all markets and draw attraction of incorporating scoria based light weight construction in Saudi Arabia and GCC countries. Findings of the SWOT analysis indicate that high logistics costs for distributing the aggregates across different regions in Saudi Arabia and clients' resistant to change are among the major obstacles to the commercialized production and utilization of lightweight concrete as green construction material. The findings further revealed that huge scoria deposits in Saudi Arabia, and the potential decrease in density self-weight of structural elements are the major drivers and enablers for promoting the adoption of lightweight concrete as alternative green construction material in the construction sector.

Web-based Distributed Lean Construction Information System;Development of System Prototype (웹 기반 분산형 린건설 정보시스템 개발;시스템 프로토타입 개발)

  • Park, Moon-Seo;Yoon, You-Sang
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.182-189
    • /
    • 2007
  • To reform and improve the productivity of construction industry, 1) it should be encouraged to improve the construction production process and 2) it is required to enhance reliability of construction information based on the systematic thinking process. To promote the information reliability created during construction production process, Lean Construction Research Center(LRC2) is developing a supporting system to improve design/material supply/schedule management, functioning to efficiently manage the information created at construction production processes and developing a web based construction information system that provides result management/decision making support/knowledge based information services.

  • PDF

Development of the lift-up and procurement system for Just-in-Time in the Building Construction (건설공사의 적시생산(Just-In-Time)을 위한 양중시스템 개발)

  • Shin Bong-Soo;Kim Chang-Duk;Suh Sang-Wook;Lim Hyoung-Chul;Choi Woon-Ki
    • Korean Journal of Construction Engineering and Management
    • /
    • v.4 no.4 s.16
    • /
    • pp.182-191
    • /
    • 2003
  • The material lift-up and procurement management for high-rise buildings is complex and critical key to the success of projects. It has been hardly managed by the heuristic or rule-of-thumb techniques which are adapted in usual construction building sites. Especially in downtown high-rise residential building project sites, the limit of heuristic management techniques is critical. It has space constraint for materials loading and site transportation especially in finish work phases in which construction period diverse work trades struggle for their own material and manpower transportation. Hence, it is essential to adapt JIT(Just-In-Time) concept in these particular types of building construction project sites. According to the analysis of the case project sites, the communication and flow of relevant information regarding material lift-up and transportation in project sites is the key factor for successful performance. Therefore, this study analyzes the flow and site transportation of the key materials and provides the system, PLUTO(Procurement & Lift-Up for material Transport Optimizing system). This study also applies the system in the case site and verifies the model validation in actual project.

Numerical Analysis on Flow of Cement Paste using 2D-CFD (2차원 CFD를 활용한 시멘트 페이스트의 슬럼프 유동 모사)

  • Yun, Taeyoung
    • International Journal of Highway Engineering
    • /
    • v.19 no.4
    • /
    • pp.19-25
    • /
    • 2017
  • PURPOSES : In this paper, the flow of construction material was simulated using computational fluid dynamics in a 2D axisymmetric condition to evaluate the effect of initial or varying material properties on the final shape of a specimen. METHODS : The CFD model was verified by using a well-known analytical solution for a given test condition followed by performing a sensitivity analysis to evaluate the effect of material properties on the final shape of material. Varying dynamic viscosity and yield stress were also considered. RESULTS : The CFD model in a 2D axisymmetric condition agreed with the analytical solution for most yield stress conditions. Minor disagreements observed at high yield stress conditions indicate improper application of the pure shear assumption for the given material behavior. It was also observed that the variation of yield stress and dynamic viscosity during curing had a meaningful effect on the final shape of the specimen. CONCLUSIONS : It is concluded that CFD modeling in a 2D axisymmetric condition is good enough to evaluate fluidal characteristics of material. The model is able to consider varying yield stress and viscosity during curing. The 3D CFD-DEM coupled model may be required to consider the interaction of aggregates in fluid.

Evaluation and Selection of Building Materials based on Life Cycle Cost Prediction (생애주기비용 예측 기반 건물재료 경제성 평가 및 선정)

  • Ahn, Junghwan;Lim, Jinkang;Oh, Minho;Lee, Jaewook
    • Journal of KIBIM
    • /
    • v.5 no.2
    • /
    • pp.34-45
    • /
    • 2015
  • As buildings become larger and more complicated, construction costs have increased with a considerable effect on buildings' Life Cycle Cost (LCC). However, there has been little consideration on economic aspects in the selection of construction materials due to limited information on the materials and dependency in architects' experience and inefficiency in cost estimation, causing design changes, increase in maintenance cost, difficulty in budgeting, and decrease in building performance. To solve these problems, this study proposed a BIM-based material selection model which reflects the comprehensive economic efficiency of building materials. Our cost prediction model can estimates the material-related cost during the entire building life cycle. Furthermore, we implemented the proposed model in connection with BIM, which can analyze and compare LCC by material. Through the validation of the model, we could confirm the necessity of LCC-based material selection in comparison with the conventional cost-centered material selection.

The Relationship Between the Quality of Surface Layer of Concrete Floor and the Defect of Self-Leveling Material - Evaluation Method about Surface Layer Quality of Concrete Floor Groundwork Corresponding to Defect in Self-leveling Material (Part II) - (콘크리트 표층부 품질이 SL재의 하자에 미치는 영향 - SL재의 하자 발생에 영향을 미치는 콘크리트 표층부의 품질 평가방법(II) -)

  • Kim, Doo-Ho;Choi, Soo-Kyung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.7 no.4
    • /
    • pp.125-132
    • /
    • 2007
  • The use of Self-Leveling material is increasing recently. This paper assesses the quality of surface layer of concrete floor when Self-Leveling material is defective. The paper shows how to predict the defect of SL material before construction begins. The relationship between the quality of surface layer of concrete floor and the defect of SL material was determined and the quality of surface layer of concrete floor was then estimated. The relations between the quality of surface layer and the defect of SL material were determine considering surface strength, moisture, and consistency of surface layer. Absorbing amount was used as the indicator of consistency and the absorbing amount of test material was measured. Then the relations between the test material and surface strength were determined. Generally concrete floor with greater consistency has greater surface strength, however in this study, we hound that high impact concrete floor could have lower surface strength as the consistency gets bigger. The relations between the level of defect occurred in SL material and the quality of surface layer were examined and we clarified that the surface layer with lower consistency gets higher possibility to occur exfoliation in early stage, one or two weeks after constructing SL material. When the consistency is sufficient, the occurring situation of defect depends upon the moisture of surface layer. Little amount of moisture gets higher possibility not to occur the defect. As the amount increases, fissure generates and early exfoliation may occur. In addition, the level of fissure is highly related with the surface strength.