• Title/Summary/Keyword: construction engineering technology

Search Result 6,946, Processing Time 0.034 seconds

The Impacts of Reduced Labor Hours on the Construction Period and Cost of Tunnel Project (근로시간 단축에 따른 터널 공사의 표준 공기 및 공사비 영향 분석)

  • Park, Taeil;Kim, Kyunghoon;Shin, Eun-Young
    • Korean Journal of Construction Engineering and Management
    • /
    • v.20 no.2
    • /
    • pp.37-43
    • /
    • 2019
  • After the new standards for labor hours has been released, various problems come up in construction field, such as income reduction of employees, extension of construction period and increased construction cost. Although it is expected that the impact of the new standard on the construction industry is more worse than other industries form the view of productivity, not much works have been done to identify those impacts. Thus, this research proposes the standard construction processes, excavation cycle, and unit construction period for NATM tunnel project based on 'Construction Standard Production Rates.'The study also investigated the impact of reduced labor hours on the management of work crews, construction periods and costs of tunnel projects. The results showed that under the 52 labor hour standard, the construction periods for the excavation work and whole project was increased by 20% and 8.9%, respectively, but the construction costs for the excavation work and whole project was decreased by 1.4% and 0.6%, respectively.

Sensitivity Analysis of Shear Strength Parameters($C, _{\Phi}$)and Slope Angel in Slope Stability Analysis (사면 안정해석에 적용되는 지반강도정수($C, _{\Phi}$)와 사면경사 민감도 분석)

  • Baek, Yong;Bae, Gyu-Jin;Kwon, O-Il;Jang, Su-Ho;Koo, Ho-Bon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.179-184
    • /
    • 2005
  • Shear strength parameters obtained from filed survey are important factors in the analysis of slope stability. In this study, sensitivity analysis was performed to evaluate the effect of input parameters on the analysis of slope stability. The input parameters selected for sensitivity analysis were slope angle, cohesion, and friction angle. Monte-Carlo Simulation method was used for calculating input parameters and the factor of safety was computed by means of limit equilibrium method. A rock slope, which has failed in the field, was used for the sensitivity analysis in the analysis of slope stability. The result of analysis shows that the factor of safety of the rock slope was a little low. From partial correlation coefficient(PPC) of input parameters determined from the sensitivity analysis, slope stability was dependant on cohesion and slope angle. The effect of friction angle was lower than that of cohesion and slope angle on slope stability.

  • PDF

Evaluation on compressive strength of steel-concrete composite piles using a large scaled UTM(Universal Test Machine) (대형 UTM을 이용한 강관합성 말뚝재료의 강도 특성 평가)

  • Lee, Ju-Hyung;Kwon, Hyung-Min;Park, Jae-Hyun;Kwak, Ki-Seok;Chung, Moon-Kyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.482-489
    • /
    • 2009
  • Various model piles with different sections such as reinforced concrete, steel, steel-concrete composite without rebar and steel-concrete composite with rebar were made, and vertical load test was conducted using a large scaled UTM(Universal Test Machine) to evaluate Young's modulus and ultimate load of the model piles. Based on the tests, ultimate load of steel-concrete composite pile is 31% greater than the sum of it of reinforced concrete pile and it of steel pile. This is caused that ultimate load and Young's modulus of inner concrete increase due to confining effect by outer steel casing. Variation of ultimate load is also insignificant depending on the ratio of length to diameter(L/D), therefore bucking has not an effect on change of ultimate load in case of the L/D below 10.

  • PDF

Experimental study on RC beams externally bonded by CFRP sheets with and without end self-locking

  • Chaoyang Zhou;Yanan Yu;Chengfeng Zhou;Xuejun He;Yi Wang
    • Steel and Composite Structures
    • /
    • v.48 no.5
    • /
    • pp.599-610
    • /
    • 2023
  • To avoid debonding failure, a novel type of hybrid anchorage (HA) is proposed in this study that uses a slotted plate to lock the ends of the fiber-reinforced polymer (FRP) sheet in addition to the usual bonding over the substrate of the strengthened member. An experimental investigation was performed on three groups of RC beams, which differed from one another in either concrete strength or steel reinforcement ratio. The test results indicate that the end self-locking of the CFRP sheet can improve the failure ductility, ultimate capacity of the beams and its utilization ratio. Although intermediate debonding occurred in all the strengthened beams, it was not a fatal mode of failure for the three specimens with end anchorage. Among them, FRP rupture occurred in the beam with higher concrete strength and lower steel reinforcement ratio, whereas the other two failed by concrete crushing. The beam strengthened by HA obtained a relatively high percentage of increase in ultimate capacity when the rebar ratio or concrete strength decreased. The expressions in the literature were inspected to calculate the critical loads at intermediate debonding, FRP rupturing and concrete crushing after debonding for the strengthened beam. Then, the necessity of further research is addressed.

IMPLEMENTATION OF PRODUCT DATA MANAGEMENT SYSTEM FOR DESIGN OF BRIDGE STRUCTURES

  • Jin-Suk Kang;Seung-Ho Jung;Yoon-Bum Lee;Kwang-Myong Lee
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1318-1323
    • /
    • 2009
  • In recent years, dramatic advances in information technology have motivated the construction industry to improve its productivity. Computer-based information technology includes Computer-Aided Design (CAD), Computer-Aided Engineering (CAE), Computer-Aided Manufacturing (CAM), Enterprise Resource Planning (ERP), Digital Mock-Up (DMU) and Product Data Management (PDM). Most construction industries are trying to apply these technologies for quality improvement, reduction of construction time and cost. PDM is very useful for managing data and process related to product design and manufacturing. PDM system has various functions such as drawing and engineering document management, product structure and structure modification management, part classification management, workflow management, and project management. In this paper, PDM system was applied to the design of steel-concrete composite girder bridge. To make a practical guidance for PDM implementation to bridge design, the procedure for its implementation was presented. Consequently, this paper could be useful to enhance the efficiency of bridge design.

  • PDF

WORKFORCE INFORMATION DATABASE AND RFID TECHNOLOGY TO TRACK AND MANAGE WORKFORCE INFORMATION

  • Yong-Woo Kim;Sang-Chul Kim;Chan-Jeong Park
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1094-1099
    • /
    • 2009
  • Workforce information is important in production planning because production planning requires matching a production unit's capacity to loads of assignments. However, tracking and managing workforce information such as skills and accident history is not an easy job. This paper describes a prototype database system for a workforce database system that employs RFID technology. This system tracks daily workforce production capacity on sites. A pilot project is described to explore the benefits and possibility of using radio-frequency identification (RFID) to track and manage workforce information, and is followed by the results of a survey to identify benefits. In addition to the survey identifying the benefits of the database system, the paper also presents a list of challenges through a series of interviews.

  • PDF

BIM-Based New Construction Technology Database Using Parametric Modeling (파라메트릭 모델링을 활용한 BIM 기반 건설신기술 데이터베이스 구축)

  • Kim, Dain;Choi, Jaehyun;Lee, Jin Gang
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.163-164
    • /
    • 2023
  • The active promotion of construction technology application, aimed at cost reduction, construction time shortening, and performance enhancement during the implementation of Value Engineering (VE) in design, is underway. However, in the process of deriving VE ideas, it is common to simply reuse VE ideas from similar past construction projects, and the application of construction technology is often insufficient. Therefore, in this study, we intend to establish a database linking construction technology information with Building Information Modeling (BIM) models to activate the application of construction technology in the process of deriving VE ideas.

  • PDF

Using Real Options to value the flexibility of Engineering Management decisions in Infrastructure Projects

  • Koo, Bonsang
    • Journal of Construction Engineering and Project Management
    • /
    • v.3 no.1
    • /
    • pp.10-13
    • /
    • 2013
  • Determining on a particular construction method is typically decided in the initial phases of a project. However, changing conditions during actual construction may require a different method or technology to be employed. Providing an option for project managers to change construction provides flexibility that can increase value to the overall project. This research provides the ability to modify construction methods as a real option, which allows its value to be modeled. The research also formalizes a way to integrate a binomial lattice model with the Earned Value Method's S-curve. The integrated model provides a decision support tool that planners can use to determine whether to exercise the option depending on the status metrics provided by EVM.

Exploring Effective BIM Workflow Among Practitioners by Technology Acceptance Model: A Case Study on the Construction of Facade

  • Guo, Jingjing;Yang, Jinze;Peng, Senlin;Mao, Chao
    • International conference on construction engineering and project management
    • /
    • 2017.10a
    • /
    • pp.201-209
    • /
    • 2017
  • Facade structure system plays an important role in modern architecture and design. Many contractors start using Building Information Modeling (BIM) to help design and lay-out façade walls in recent years. However, there are still some users refuse to accept BIM on façade construction. Therefore, we employed Technology Acceptance Model (TAM) to assess the users acceptable of BIM work flow, with using a practical case of facade construction in Chongqing Wanda City. The factors that will affect the builder's decision of whether using BIM or not when construct façade, and the relationship among them will be found via this model. Through the analysis using TAM, this research found that the direct factors influencing the completely acceptance of BIM in façade construction is the BIM quality and Result Demonstrating, and the parameter impacting the intuition engendering is the Exterior Condition. Therefore, this paper proposes a more systemic model of BIM acceptance in curtain wall to analyze the user's acceptance. The solution can also offer a reference for future research and construct on façade structure. The acceptance model has the significance that it can help to analyze the reason why users refuse to use BIM in façade construction, thus to help users accept BIM.

  • PDF