WORKFORCE INFORMATION DATABASE AND RFID TECHNOLOGY TO TRACK AND MANAGE WORKFORCE INFORMATION

Yong-Woo Kim,¹ Sang-Chul Kim,² and Chan-Jeong Park³

 ¹ Assistant Professor, College of Architecture and Urban Planning, Dept. of Construction Management, University of Washington, Seattle, WA, USA
 ² Full-time Lecturer, Dept. of Architectural Engineering, Hanbat National University, Daejeon, Korea
 ³ General Manager, GS Engineering and Construction, Seoul, Korea
 Correspond to harvard9@hanbat.ac.kr

ABSTRACT: Workforce information is important in production planning because production planning requires matching a production unit's capacity to loads of assignments. However, tracking and managing workforce information such as skills and accident history is not an easy job. This paper describes a prototype database system for a workforce database system that employs RFID technology. This system tracks daily workforce production capacity on sites. A pilot project is described to explore the benefits and possibility of using radio-frequency identification (RFID) to track and manage workforce information, and is followed by the results of a survey to identify benefits. In addition to the survey identifying the benefits of the database system, the paper also presents a list of challenges through a series of interviews.

Keywords: Workforce information database, Radio-frequency identification (RFID) technology, tracking, Production planning, Construction management

1. INTRODUCTION

Contractors deal with several formidable tasks during construction. One of the important challenges is project control. Effective project control involves a multitude of tasks including procurement management, cost management, schedule management, quality management, production planning/control, and safety management. Among those tasks, production planning has received attention in that it is a lowest level of planning which gives direct order to workforce.

Workforce information is important in production planning because production planning is a job matching a production unit's capacity to loads of assignments [1, 2]. However, tracking and managing workforce information, such as the level of workmanship and accident history, is not an easy job in that the construction industry has high turn-over rates. The need for data entry and management at the project level is a major obstacle to the success of a system [3]. If a project size is large, tracking workforce information takes immense time and efforts. The paper proposes to use radio-frequency identification (RFID) technology to track and manage workforce information, specifically for frontline managers to use for their production and safety planning and control.

This paper presents a case study where RFID technology coupled with workforce database system was used to track and manage workforce information. It also reviews literature on applying RFID to construction. The system architecture of the suggested system is described, followed by description on implementation of the system

with an example. The paper also presents the potential benefits and challenges from the suggested system.

It is noted that the system described in this paper covers only what and how the information on workforce is tracked and transferred to the computerized project management system. The study on how such information is utilized in the planning is still under development.

2. RFID AND ITS APPLICATION TO CONSTRUCTION IN LITERATURE

RFID is one of important automatic identification techniques currently being used in many industries such as manufacturing. The RFID tag is a small wireless computer chip which can be embedded into almost any product. It uses an on-board microprocessor and an antenna to wirelessly transmit and receive certain information uniquely related to the item it is attached to. There are two types of RFID tags - passive and active tags [3]. The passive tag does not run on a battery, rather, it uses the electromagnetic field generated by the signal from the reader to power the processor and transmit information. This allows the chip to be small, inexpensive, and most importantly, since it does not require an onboard power source, the life of the tag is effectively unlimited. The RFID tag used in the suggested system uses the passive tag. However, the disadvantage of this type of tag falls on its range because it needs a signal from a reader to generate power. On the other hand, the active tag consists of an on-board power source which allows it to create its own signals which can be delivered to the reader over long distances. They usually operate at

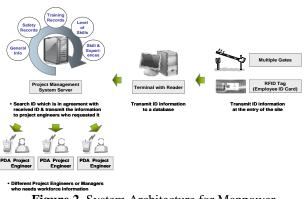
433 MHz, 2.45 GHz, or 5.8 GHz, and they typically have a read range of 60 feet to 300 feet [3]. However, the drawback of this type of tag lies to its size due to the battery power. Active tags are used on large assets, such as cargo containers, rail cars and large containers, which need to be tracked over long distances.

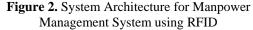
This new era of technology application have promised improvements in productivity, security, and other benefits for a variety of industries. However, few applications have been developed that are related to the construction and facilities operations environment. Recently several attempts have been made to applying RFID technology to construction industry.

Ergen et al. [4] suggested using RFID in a facility management. They tested technological feasibility of using RFID within a facility repetitively on a daily basis with active RFID [5]. Song et al. [6] evaluated the use of RFID technology to be used tracking pipe spools through long supply chain. Schneider [7] asserted through his pilot studies that RFID is an effective method of reducing project activity times and saving project costs. Literature shows that RFID can benefit the construction industry with applications in a variety of management areas such as materials management, tracking of tools and equipment, automated equipment control, jobsite security, maintenance and service, document control, failure prevention, quality control, field operations, and construction safety.

3. PRODUCTION PLANNING AND WORKFORCE INFORMATION

Production planning, as distinct from project scheduling, appears to have been introduced into construction with the Last Planner® system [1, 8]. Production planning is a job making the best match of capacity and load achievable in given conditions [9]. A production planner needs information not only on task loads but also on resource capacity as shown in Figure 1.


Figure 1. Production Planning Mechanism


Traditionally, task loads can be analyzed easily comparing to uncertainty of resource capacity. Especially, information on workforce capacity remains unknown in production planning in many cases while information on equipment capacity can be easily accessed. For example, the level of difficulty or demands of resources on each task can be measured and managed while information on labor capacity such as the level of workmanship is hard to be tracked and managed. However, such information on labor capacity is important in production planning in that it is a job of matching task loads with resource capacity. The critical process in production planning taking into accounts labor capacity is to generate and manage relevant information.

4. SUGGESTED WORKFORCE INFOR-MATION DATABASE SYSTEM USING RFID

4.1 RFID System

RFID is the next wave in the evolution of computing. It is a technology that connects objects to databases so that they can be tracked and shared with others. Figure 2 shows the system architecture of the RFID system to be used in the suggested workforce information database system.

Employee ID cards have passive RFID tags and the reader scans the RFID tags when employees pass the gate where the reader is installed. The system operates at 13.56 MHz taking into account the readable range required on sites. The reader passes the information to the workforce information database system. This data can then be retrieved by the users who need the information for their production and safety planning.

4.2 Workforce Information Database System connected with RFID system

The authors surveyed 136 project engineers and managers to investigate what workforce information can be useful for their production/safety planning and control. Table 1 shows the survey results. In the system, the following information is tracked and managed.

• General personal information (age, nationality, passport number, workmanship);

- · Safety records; and
- Work experience and the level of workmanship

Table 1. Survey Result on Useful Workforce Information

Information	No. of people who selected the type of information	Percentage
Job Classification	124	93.9%
Accident record	121	91.7%
Communication Skill	54	40.9%
Level of Workmanship	116	87.9%
Training record	71	53.8%
Violation record	89	67.4%
Work experience	85	64.4%

* Total number of respondents, 132

; non-respondents, 4.

A simple database schema, designed for the workforce information databases, has been used. Figure 3 illustrates the ER-diagram for the databases, which shows the type of data and the relationships between data. Tables regarding general information include data on personal information, eligibility of work, and visa status. Tables regarding safety record include data on health, safety violation, and training records. Tables regarding work history and workmanship include employment history including previous projects and the level of workmanship.

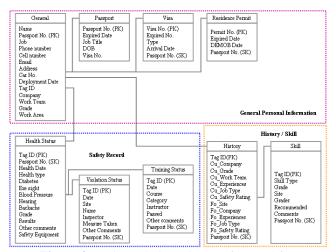


Figure 3. Entity Relation Diagram for Workforce Information Database

5. SYSTEM DESCRIPTION AND IMPLEMENTATION

In an attempt to achieve transparent and efficient workforce information management, a prototype workforce information database system is combined with RFID technology has been developed.

If a new worker arrives on site, information on a new worker needs to be registered in the workforce information database system. Once registered, he or she gets a temporary ID to which a passive RFID tag is attached. When he or she gets into site, he or she must scan his/her ID on the RFID reader. The information is sent to the workforce information database system the moment a tag is scanned. Front line mangers get exact information on how many people come on site, and when they arrived on the site instantly. Front line managers are also able to check information regarding their crew including general information (i.e., nationality and age), safety records, work history and workmanships on site through their PDA.

The example windows below show what information can be retrieved through the workforce information database system connected with RFID system. Figures 4, 5, 6, and 7 give actual screen dumps from the workforce information database system. Figures 4 and 5 show data input screens regarding general personal information. The Entry Form under the section of "general" allows the user to enter information about each labor's job, contact information, evidence of work eligibility, and work location

I	Personnel Reco	rds						
F	rom	🛄 ~ То 📃		Search (Category	• Key word)[Search
Sum	rent: 10/5992(Total59	92)/10 💌	lines 🛛 😣 Safety	Print Pass.	Ind. Work D	ata 😐 Print 😐	Add 😐 Edit	O Del
7	Subcontractor	Discipline	Occupation Category	Name	First Work Date 💌	ID No.	Appropriate	Check- Result
	DAEMYUNG GS	플렌트	계장공	김경서		641220*****	Y	
П	Italian Thai for GS	플랜트	Common Labor	JARIN Y.	05-04-2007	1G0937*****		
	Italian Thai for GS	물건트	Common Labor	MONTAKAN T.	05-04-2007	IG0938*****		
	VPE	물련트	Pipe Fitter	NIWAT K.	05-04-2007	VP1701*****		
	Italian Thai for GS	플랜트	Common Labor	NOANGYAO B.	05-04-2007	IG0935*****		
	Italian Thai for GS	플렌트	Common Labor	NOOPIS K.	05-04-2007	IG0934*****		
	Italian Thai for GS	플랜트	Helper	PAISARN B.	05-04-2007	IG0940*****		
	VPE	물건드	Pipe Fitter	SOMPON T.	05-04-2007	VP1702*****		
	VPE	플랜트	QC Inspector	SONGKRAN N.	05-04-2007	VP1704*****		
	Italian Thai for GS	플랜트	Carpenters	SONTAYA L.	05-04-2007	1G0936*****		

Figure 4. Personal records window

General Info	rmation(Required I	formation)				
Name *	JARIN Y.	TH	AI			
Passport No.*	•••••	User S	earch			
Job *	Common Labor	Search	(Search or E	inter after input)		Register photo
Phone Number			cell Number			
Email						Reg. Photo
Address						
Car NO						
	NO.			Job Title		
Passport	Expired Date			DOB		
	NO.			Recruiting Ag	jent	
Visa	Expired Date			Arrival Date		
	Туре			Me111010-000		
Residence Permit	NO.		-	DEMOB Date		
	Expired Date		=			
0 Work Locati	00					
Deployment Date	2007-05-04			Teg ID	7\$3316001	160937
Company*	Italian Thai for GS-Pl	int	View			
Work Team*	Italian Thai for GS]		Grade	Select	
Work Aree						

Figure 5. Personal records card

In the same manner, information about safety records is entered using data entry form as shown in Figure 6. Three types of safety data are updated and managed to prevent the safety accident. The first one is health status. Periodically or occasionally, all workers have to get a health test such as a blood pressure test. The second one is safety violation. If a worker does not wear a safety helmet, the violation record will be updated in the

I.

workforce information database system. The third one is a safety training status.

O Health Status										
• Health Status										
Health Check-up D	ate		Health Check-up Type	Check-up C Regular Check-up C Scheduled Che						
Check-up Details	Diabetes Eye Sight(L/R)	SGOT SGPT								
Check-up Results	Grade ¥	rade Results Appropriate								
Other Comments										
Safety Equipment	E Leggings E I	Belt 🗆 Helmet 🗖 V	/ork Boots							
O Safety Violatio	ons (Number of Vio	lations : D)								
Violation	Site	Violation Nam	e Inspector	Measures Taken	Other Comments					
		There	is no data III							
O Safety Trainin	g Status									
raining Date	Course	Category	Instructor	Passed	Other Comments					
		#h	is no data III							

Figure 6. Safety records window

The database system also allows the user to enter work experience and the level of workmanship for each labor as shown in Figure 7. Sometimes managers have workforce information such as the level of workmanship. However, such information is not properly managed and maintained in many cases. The workforce information database system builds comprehensive information of each worker's capacity including the level of workmanship and safety records.

General + Safety - Hist	an and set the					
General Safety	April 1					
Current Site						
Company	Grade	Work Team	Experie	nce 30	th Type	Safety Rating
Italian Thai for GS - Plant					ommon Labor	Appropriat
O Former Site						
Site	Com	pany	Experience	Job Type	Safe Ratir	th affice
		There is no d	ista .			
© Skill Info						
Skill Type Grade	Sita	Grader,	Recommended	Comme	ets .	
		There is no d	lata			
		> Save > 0				
		7.5eve 7.0	lose			

Figure 7. History/Skill window

The workforce database system allows the users to consider workforce capacity in production planning. As shown in Figure 8, for example, the user made comments to enforce safety field supervision taking into accounts the safety records. However, there is no guarantee that employees assigned to the task will show up.

Occupati	on Search Drout and click.		Area A13		• Search	
Assign	ment Ext. Cladding Installation +See	ch l	Date 02-24-2008		• Search	
Name	Subcontractor	Grader	Safety record	Experience		
Pablo L. Torres	GSENC-Common	s	None	4 project		
Eugenio Belen	GSENC-Common	8	2 NCR	2 project		
Rodolfo	GSENC-Common	s	None	1 project		
inforoso Tabago	GSENC-Common	8	1 NCR	1 project		
Mario Rey Guieb	GSENC-Common	A	None	3 project		

Figure 8. Example of Production Unit Capacity Screen for Production Planning

The system uses RFID technology to trace workforce information. When any labor gets into site, he or she must scan his/her ID on the RFID reader, and this information is sent to the workforce information database system (Figure 9). For example, one demonstration project set up four different gates through which every employee should scan his/her ID. Figure 10 shows layout of site and location of each gate where RFID antenna was installed. Front line managers are able to check information regarding their crew including general information (i.e., nationality and age), safety records, work history and workmanships on site through their PDA (Figure 11) as well as the number of their workforce on a specific job. In case where PU (production unit) members assigned to the task in the planning are different from employees who show up on sites, a frontline manger can react timely and effectively.

Figure 9. Issuing ID and scanning RFID reader

Figure 10. Site Layout and RFID Reader Location

Figure 11. PDA window of a Frontline Manager

Many applications are possible using workforce information database system. If frontline managers need to know safety violation records or who violated safety regulations for the purpose of safety management, for example, they can easily retrieve such information. The project in this example does not allow any worker who violated safety regulation more than two times. When retrieved between Feb. 01 and Feb. 24, safety violation records are shown in Figure 12. In the Figure 12, seven records are shown during the period, which provides frontline managers with insight into safety control.

1	Safety Violatio	ns								
1	fram 12-01-2008	(1) - Te	02-24-2008		Search Car Search Car				+ Search	
¢,	ment: #/7(Total7) /	0 winds	Safety violal	ions can be r	Subcontine Violator	her .	riet Record	ds 💌	term2.0d	
P	Subcontractor	Volator	Occupation	Date	Violation Measures 1	alan .	stion	Maasures Taken	Exceptions	
0	Douglas CH1-218	BAREEN	Electrician	2008.02.04	Park Kyung-3n		약은 다비	002 x03 048		
0	Hanyang Corporation LLC-	PETRONIO LAUREL	Foreman	2008.02.04	Park Kyung-bri	227	48.03	1000048		
0	000#R00(\$)-	DUMORA BOR PUN	Soffulder	2010.02.09	Park Koung-Sn	927	418 CH4	13처합행시 적 법사 안전값이 [[사용		
0	(年)年期春世世-日春	WANCHAL HORNEN	Ripper	2008.01.10	Park Kning-3n	#20	10.48	학업장 (3세시) 의 표면		
0	Al-Hassan Engineering Ca. S.A.O.G201	KANNAJYA YADAV	Common labor	2008.70.10		#22	20.48	응입작업 근처 해서 취험	n	
0	Al-Hassen Engineering Ca. S.A.O.G#1	MOHD SHAMLAZ	Common labor	2008/07.11	Park Kyung-Sin	#\$7	작용 다비	MUR 048		
0	Al-Hassen Engineering Co. S.A.O.G##	SHAH KHALID	Common labor	2008.03.57	Fack Kyung-Sin	927	418 034	859048		

Figure 12. Safety violation status

6. DISCUSSION: BENEFITS AND CHALL-ENGES

6.1 Survey Methodology

The authors developed questionnaires to identify the benefits of the suggested system. The questionnaires were distributed to a group of five project mangers, and were revised according to comments from a pilot survey. A Likert scaling system was used for the questionnaire. This is a seven-point rating scale in which the attitude of the respondent is measured on a continuum from highly favorable to highly unfavorable, or vice versa, with an equal number of positive and negative response possibilities and one middle or neutral category [10].

The questions related to the suggested system are as follows;

Example question 1: Does this system help when you perform production planning?

Example question 2: Does this system help when you count the number of crew on site?

System users who experienced a system were asked to answer the questionnaire and provide comments. Table 2 shows results of a survey using seven-point Likert scale questions, in which a score of "1" corresponds to "Least Helpful" and a score of "7" corresponds to "Most Helpful".

6.2 Benefits from Workforce Information Database Using RFID Technology

Benefits from the suggested system have been identified in Table 2 and they are grouped into three categories throughout the survey:

1) Traces workforce information on workforce capacity for production and safety planning

In the current model, only safety information, which includes safety-related violation records and safety training history for each worker, is used for production planning. The system tells a frontline manager if any crewmember has safety records that go beyond the customized tolerance level. These built-in alarms allow a frontline manager to strengthen the level of safety supervision. In addition, there is great potential to use workforce information in the contractor's production planning.

2) Reduces time consumed to count the number of crew on site

The most direct, but not necessarily the most substantial, benefit is reduced time and effort in counting the number of workforce. In the traditional approach, each frontline manager spends 5 to 20 minutes in headcounting on a daily basis. Through RFID systems no resources are required to count the number of crew on site. The information can be easily grouped into work divisions or work areas. Additionally, such information is connected to the accounting system which automatically collects information on the number of working hours or days on each individual. The time required for processing time cards for employees has been reduced without question.

Information		No.	Produc- tion planning	Safety planning	Time of Counting	Work- force security	Accuracy of system	Tool of career manage- ment	Easy to operate	Average
Commerci	Foremen	7	6.1	6.0	6.3	5.1	6.8	3.5	2.5	5.2
al Building	Superintendents	6	5.8	5.5	6.4	4.5	6.6	3.0	2.8	4.9
project	Field Engineers	8	6.3	6.1	6.6	4.4	6.6	2.5	3.4	5.1
(23 sites)	Site Managers	4	6.4	6.2	6.1	4.8	6.8	3.0	3.0	5.2
Residential	Foremen	9	6.0	5.5	6.6	5.0	6.6	2.5	2.4	4.9
	Superintendents	8	5.9	5.2	6.7	5.2	6.8	2.6	2.1	4.9
project (31 sites)	Field Engineers	15	6.4	5.8	6.4	4.5	6.6	3.0	3.5	5.2
(31 sites)	Site Managers	9	6.1	5.5	6.2	4.6	6.2	3.5	3.1	5.0
Civil	Foremen	4	5.5	5.0	6.3	4.2	6.4	2.8	2.2	4.6
	Superintendents	5	5.3	5.2	6.4	4.8	6.5	3.2	2.0	4.8
project (14 sites)	Field Engineers	3	6.0	5.8	6.5	5.0	6.4	3.6	2.8	5.2
(14 sites)	Site Managers	3	5.9	5.6	6.6	5.2	6.6	3.6	2.6	5.2
T	Foremen	2	6.0	6.0	6.0	5.5	6.5	3.5	3.0	5.2
Industrial	Superintendents	4	5.8	5.2	6.4	5.3	6.4	3.7	3.3	5.2
project (8 sites)	Field Engineers	3	5.9	5.2	6.0	5.3	6.2	3.3	3.5	5.1
(0 51(5))	Site Managers	1	6.0	5.0	6.0	5.0	6.0	3.0	4.0	5.0
Total	/ Average	91	6.0	5.6	6.3	4.9	6.5	3.1	2.9	-

Table 2. Survey Result on Benefits with the Proposed System

* Total number of respondents, 91, 1 = Least Helpful, 7 = Most Helpful

3) Provides error-proof information on workforce security

Other immediate benefits from the use of RFID technology in tracking workforce information are a function of its capability to check the security. The security issues include identifying illegal workers. For example, the workers who do not have valid work permits or working visas are easily identified.

6.3 Challenges with the system

In addition to the survey to explore the benefits from implementing a new labor information tracking system using RFID, the authors interviewed twelve superintendent and project managers to identify limitations and challenges in implementing the suggested system. We avoided a standardized survey to capture different perspectives of people who experienced the system. Here are the lists of limitations and challenges that have been identified.

1) When one laborer works on more than two different jobs in a day the system does not automatically trace and allocate his or her wage into a different cost code. Some performance information such as productivity data for each cost code is not generated unless a foreman manually allocates the proportion of his or her time to different cost codes.

2) Workforce information could be incomplete or distorted if workers had worked for different company (i.e., different contractor). It is because the database system is not shared with other contractors.

3) Workforce information for a squad is currently not available since current information is collected at the individual level. The information would be more informative to production planners if information for squads could be traced and controlled as well.

7. CONCLUSIONS AND MOVING FORWARD

This paper describes a prototype workforce information database system which focuses on tracking daily workforce production information on sites. The system uses RFID technology to track workforce information. The workforce information controlled in the system includes work history, skills, training records as well as personal records. In addition to a survey for identifying benefits, the paper presented a list of challenges through a series of interviews. The next phase of the study evaluates how such information on workforce capacity is utilized in production planning relative to the loads of the tasks. Other researchers working in this area are encouraged to contact the authors to share ideas and coordinate future research.

8. ACKNOWLEDGEMENT

This research was supported by GS Engineering and Construction Corporation. The authors thank the company, engineers, and consultants who helped implement this research and gave valuable comments.

REFERENCES

[1] Ballard, G. (1994). "The Last Planner", Northern California Construction Institute, Monterey, California.

[2] Ballard, G. (2000) The Last Planner System of Production Control. Ph.D. Thesis. School of Civil Engineering, Faculty of Engineering, University of Birmingham, UK.

[3] Futcher, K. (2001). "User survey on a WAN portfolio MIS used for portfolio/project management in Hong Kong". Proc., IT in Construction in Africa, CIB-Int. Council for Research and Innovation in Building Construction, Rotterdam, The Netherlands, W78 Workshop, South Africa.

[4] Ergen, E., Akinci, B, East, B., and Kirby, J. (2007). "Tracking Components and Maintenance History within a Facility Utilizing Radio Frequency Identification Technology", *J. Comp. in Civ. Engrg.*, 21(1), 11-20.

[5] Sarma, S., Engels, D.W. On the Future of RFID Tags and Protocols, Technical Report (Auto-ID Center, Cambridge, MA, 2003).

[6] Song, J., Haas, C, and Caldas, C. (2006). "Tracking the Location of Materials on Construction Job Sites", *J. Constr. Engrg. and Mgmt.*, ASCE, 132(9), 911-918.

[7] Schneider, M (2003). RFID Technology and its Applications in the Commercial Construction Industry, M.S. Thesis in Civil Engineering, University of Kentucky, April 24, 2003.

[8] Ballard, G. and Howell, G. (1998). "Shielding Production: An Essential Step in Production Control", *J. Constr. Engrg. and Mgmt.*, ASCE, 124 (1) 11-17.

[9] Ballard, G., Kim, Y., Jang, J., and Liu, M. (2007). "Lean Implementation at Project Level", A Research Report to the Construction Industry Institute, Sept, 2007.

[10] Diekmann, James E., Mark Krewedl, Joshua Balonick, Travis Stewart and Spencer Won (2004). Application of Lean Manufacturing Principles to Construction. A report To the Construction Industry Institute, University of Texas at Austin, Austin, TX, July 2004. Produced under the guidance of Project Team 191.