• Title/Summary/Keyword: constitutive relationship

Search Result 178, Processing Time 0.022 seconds

Axial compressive behavior of concrete-filled steel tube columns with stiffeners

  • Liang, Wei;Dong, Jiangfeng;Wang, Qingyuan
    • Steel and Composite Structures
    • /
    • v.29 no.2
    • /
    • pp.151-159
    • /
    • 2018
  • In order to reduce the deformation and delay the local buckling of concrete filled steel tube (CFST) columns, strengthening the structures with stiffeners is an effective method. In this paper, a new stiffening method with inclined stiffeners was used to investigate the behaviors of short CFST columns under axial compression. Besides, a three-dimensional nonlinear finite element (FE) model was applied to simulate the mechanical performances, including the total deformation, local buckling, and stress-strain relationship. Revised constitutive models of stiffened steel tube and confined concrete are proposed. A good agreement was achieved between the test and FE results. Furthermore, the calculated results of load capacity by using a simplified method also show a good correlation with experimental data.

Hypoelastic modeling of reinforced concrete walls

  • Shayanfar, Mohsen A.;Safiey, Amir
    • Computers and Concrete
    • /
    • v.5 no.3
    • /
    • pp.195-216
    • /
    • 2008
  • This paper presents a new hypoelasticity model which was implemented in a nonlinear finite element formulation to analyze reinforced concrete (RC) structures. The model includes a new hypoelasticity constitutive relationship utilizing the rotation of material axis through successive iterations. The model can account for high nonlinearity of the stress-strain behavior of the concrete in the pre-peak regime, the softening behavior of the concrete in the post-peak regime and the irrecoverable volume dilatation at high levels of compressive load. This research introduces the modified version of the common application orthotropic stress-strain relation developed by Darwin and Pecknold. It is endeavored not to violate the principal of "simplicity" by improvement of the "capability" The results of analyses of experimental reinforced concrete walls are presented to confirm the abilities of the proposed relationships.

Meso scale model for fiber-reinforced-concrete: Microplane based approach

  • Smolcic, Zeljko;Ozbolt, Josko
    • Computers and Concrete
    • /
    • v.19 no.4
    • /
    • pp.375-385
    • /
    • 2017
  • In the present paper experimental and numerical analysis of hook-ended steel fiber reinforced concrete is carried out. The experimental tests are performed on notched beams loaded in 3-point bending using fiber volume fractions up to 1.5%. The numerical analysis of fiber reinforced concrete beams is performed at meso scale. The concrete is discretized with 3D solid finite elements and microplane model is used as a constitutive law. The fibers are modelled by randomly generated 1D truss finite elements, which are connected with concrete matrix by discrete bond-slip relationship. It is demonstrated that the presented approach, which is based on the modelling of concrete matrix using microplane model, able to realistically replicate experimental results. In all investigated cases failure is due to the pull-out of fibers. It is shown that with increase of volume content of fibers the effective bond strength and slip capacity of fibers decreases.

Finite Element Analysis with Viscoplastic Formulation in Open-Die RTP Process (개방형 RTP(Rapid Thermal Pressing)공정의 점소성 유한요소해석)

  • Son J. W.;Rhim S. H.;Oh S. I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.284-289
    • /
    • 2004
  • Since polymer materials at elevated temperatures are usually rate-sensitive, the analysis of RTP process requires considering the effect of the rate-dependent. The material behavior that exhibits rate-sensitivity is called visco-plastic. A two-dimensional visco-plastic finite element formulation which constitutive equation is based on the formulation proposed by Perzyna is presented. This Paper is purposed to calcuate pressure distribution on PMMA in compression process and to predict the relationship with defects after demolding process. This paper analyzes, both analytically and numerically, the pressure distributions on the surface of PMMA during open-die RTP process. In this research, PMMA is used to be simulated at $110^{\circ}C$ near the transition temperature.

  • PDF

Numerical Simulation of Flow-Induced Birefringence in Injection/Compression Molding (사출압축성형에서의 유동에 의한 복굴절 해석)

  • Lee H.-S.;Isayev A.I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.65-69
    • /
    • 2004
  • A computer code was developed to simulate the filling stage of the injection/compression molding process by a finite element method. The constitutive equation used here was the compressible Leonov model. The PVT relationship was assumed to follow the Tait equation. The flow-induced birefringence was related to the calculated flow stresses through the linear stress-optical law. Simulations of a disk part under different processing conditions including the variation of compression stroke and compression speed were carried out to understand their effects on flow-induced birefringence. The simulated results were also compared with those by conventional injection molding and with experimental data from literature.

  • PDF

Useful Guide to Solve Herschel-Bulkley Model in a Flow Mode Damper (유동 모드 댐퍼에서의 Herschel-Bulkley 모델의 유용한 해법)

  • 이덕영;박성태
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.784-787
    • /
    • 2003
  • Electrorheological(ER) and magnetorheological(MR) fluid-based dampers are typically analyzed using Bingham-plastic shear model under quasi-steady fully developed flow conditions. A Herschel-Bulkley constitutive shear flow relationship is that the linear shear stress vs. strain rate behavior of Bingham model is replaced by a shear stress that is assumed to be proportional to a power law of shear rate. This power is called the flow behavior index. Depending on the value of the flow behavior index number, varying degrees of post-yield shear thickening or thinning behavior can be analyzed. But it is not practical to analyze the damping force in a flow mode damper using Herschel-Bulkley model because it is needed to solve a polynomial equation. A useful guide is suggested to analyze the damping force in a damper using the Herschel-Bulkley model.

  • PDF

Hot Workability Characterization of Ti Alloys Using Dynamic Material Model (동적재료모델을 활용한 티타늄합금의 고온성형성 고찰)

  • Yeom J. T.;Hyun Y. T.;Na Y. S.;Park N. K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.301-304
    • /
    • 2001
  • Hot-compression tests were carried out to investigate the hot workability of Ti64 and Ti6246 alloys at different temperatures and strain rates. Processing maps were developed on the basis of the dynamic material model unifying the relationship among constitutive behavior, hot workability and microstructure development. Stable regions, defined on the basis of four stability criteria 0${\delta}log(m)/\frac{\bot}{\varepsilon})<0$, s<1 and ${\delta}log(s)/\frac{\bot}{\varepsilon})<0$, were found to be associated with dynamic recovery and recrystallization.

  • PDF

P-M Interaction Curve of the Circular Concrete Column Strengthened with CFS (CFS 보강 원형 콘크리트 기둥의 P-M 상관도)

  • 이상호;허원석;김준휘
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.621-626
    • /
    • 1998
  • In this study, the analytic model of concrete column strengthened with CFS(carbon fiber sheets) for obtaining P-M interaction is presented. Firstly, an algorithm to evaluate accurate behavior of CFS is presented using laminate theory. Stress-strain model of CFS is presented based on the results of this algorithm. Secondly, an algorithm to evaluate stress-strain relationship of concrete column confined with CFS is presented. In order to evaluate the reliability of these algorithms, the results of analysis are compared with experimental data. Lastly, section analysis is performed by using constitutive equations of materials. As a result, P-M interaction curve of the column strengthened is obtained and the strengthening effects of CFs are analyzed.

  • PDF

Site Investigations for Design Parameter Determination (설계정수 산정을 위한 지반조사)

  • Cho, Wan-Jei
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.785-789
    • /
    • 2009
  • It is essential to carry out appropriate site investigations for the accurate prediction of the geo-structure. However, the importance of the site investigation is often overlooked due to the time and expense constraints. In this study, several cases of geotechnical design perfromed in United States are introduced with the lessons about how the site investigations are planned, performed and applied for the actual design parameter determination. Based on the case studies presented herein, experienced geotechnical engineer should participate in site investigations from the planning stage through the final boring logs and utilize all the laboratory and field tests to have consistent input parameters for the soil constitutive models. Furthermore, it is also desired to have close relationship between construction industry and the academia to compensate their needs.

  • PDF

Ultimate Tensile Analysis of Reinforced Concrete Containment Panel by using ABAQUS Program (상용프로그램(ABAQUS)을 이용한 원전 격납건물 RC Panel의 극한 인장해석)

  • 김남식;정대성;김광수
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.577-584
    • /
    • 2003
  • Tension tests of half-thickness concrete containment wall elements and material tests were conducted to derive a crack pattern and constitutive law of concrete. Main test variables are reinforcement ratio and the applied load ratio in two direction, and its effect on the behavior of reinforced concrete panel subjected to biaxial tension is investigated. Based on the test results, analytical expression is derived for the stress-strain relationship of concrete in tension. Ultimate analyses of reinforced concrete panels are carried out by a general purpose structural analysis computer program(ABAQUS), and its results are compared with the test results. The present analysis focuses on the effects of pre-analysis prior to test of specimens. These ultimate tensile analyses as pre-analysis are essential and important to design an effectual scheme of test.

  • PDF