• Title/Summary/Keyword: constant-amplitude cyclic loading

Search Result 33, Processing Time 0.015 seconds

Seismic Performance Evaluation on Bending Deformation of 2-Ply and 3-Ply Bellows Expansion Pipe Joints (2겹 및 3겹 벨로우즈 신축배관이음의 휨 변형에 대한 내진성능평가 )

  • Sung-Wan Kim;Sung-Jin Chang;Dong-Uk Park;Bub-Gyu Jeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.2
    • /
    • pp.33-41
    • /
    • 2023
  • The application of seismic separation joints that can improve the deformation capacity of piping is an effective way to improve seismic performance. Seismic separation joints capable of axial expansion and bending deformation are installed where deformation is expected and used for the purpose of safely protecting the piping. Bellows are flexible and have low stiffness, so they can be used as seismic separation joints because they have excellent ability to respond to relatively large deformation. In this study, the seismic performance and limit state for bending deformation of 2-ply and 3-ply bellows specimens were evaluated. Seismic performance was evaluated by applying an increasing cyclic load to consider low-cycle fatigue due to seismic load. In order to confirm the margin for the limit state of the evaluated seismic performance, an experiment was conducted in which a cyclic loading of constant amplitude was applied. As a result of the experiment, it was confirmed that the bellows specimen was made of stainless steel and had a high elongation, so that the 2-ply bellows specimen had the limit performance of resisting within 3 cycles even at the maximum forced displacement of the 3-ply bellows specimen.

Application of Damage Index for Limit State Evaluation of a Steel Pipe Tee (강재 배관 Tee의 한계상태 평가를 위한 손상지수의 적용)

  • Kim, Sung-Wan;Yun, Da-Woon;Jeon, Bub-Gyu;Kim, Seong-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.4
    • /
    • pp.30-39
    • /
    • 2022
  • Maintaining structural integrity of major apparatuses in a nuclear power plant, including piping system, is recognized as a critical safety issue. The integrity of piping system is also a critical matter related to the safety of a nuclear power plant. The actual failure mode of a piping system due to a seismic load is the leakage due to a fatigue crack, and the structural damage mechanism is the low-cycle fatigue due to large relative displacement that may cause plastic deformation. In this study, in-plane cyclic loading tests were conducted under various constant amplitudes using specimens composed of steel straight pipes and a steel pipe tee in the piping system of a nuclear power plant. The loading amplitude was increased to consider the relative displacement generated in the piping system under seismic loads, and the test was conducted until leakage, which is the limit state of the steel pipe tee, occurred due to fatigue cracks. The limit state of the steel pipe tee was expressed using a damage model based on the damage index that used the force-displacement relationship. As a result, it was confirmed that the limit state of the steel pipe tee can be quantitatively expressed using the damage index.

Fatigue Strength Evaluation of Steel-Concrete Composite Bridge Deck with Corrugated Steel Plate (절곡강판을 이용한 교량용 강-콘크리트 합성 바닥판의 피로 성능평가)

  • Ahn, Jin Hee;Sim, Jung Wook;Jeong, Youn Joo;Kim, Sang Hyo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.6
    • /
    • pp.731-740
    • /
    • 2008
  • This paper deals with the fatigue behavior and strength of a new-type of steel-concrete composite bridge deck. The new-type composite bridge deck consists of corrugated steel plate, welded T-beams, stud-type shear connectors and reinforced concrete filler. A total of eight composite bridge deck specimens were fabricated, the fatigue tests were conducted under four-point bending test with three different stress ranges in constant amplitude. According to the test results, the fatigue crack generated at the welding part of the corrugated steel plate, progressed down to the bottom of the steel plate and encountered the crack, which came out from the opposite side at the same position. After the two cracks were connected at the bottom of the steel plate, the lower flange was cut off and the fatigue crack developed up to the T-beam. And the displacements and strains of fatigue test specimens were increasing with cyclic loading number, these were changed sharply at the fatigue failure. The fatigue results are compared with the design S-N curves specified in the Korea Highway Bridge Design Specifications and data in NCHRP 102 and NCHRP 147 report. The new-type composite bridge deck has a stress category of C, which means that new-type composite bridge deck can be designed by the current fatigue design specifications provided for steel members.