• Title/Summary/Keyword: constant power

Search Result 2,851, Processing Time 0.027 seconds

Position Correction Method for Misaligned Hall-Effect Sensor of BLDC Motor using BACK-EMF Estimation (역기전력 추정법을 이용한 브러시리스 직류 전동기의 홀센서 상전류 전환시점 보상 방법)

  • Park, Je-Wook;Kim, Jong-Hoon;Kim, Jang-Mok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.246-251
    • /
    • 2012
  • This paper proposes a new position compensation method for misaligned Hall-effect sensors of BLDCM(Brushless DC Motor). If the Hall-effect sensors are installed at wrong position, the exact rotor position cannot be obtained. Therefore, when the BLDCM is controlled with this wrong position, the torque ripple can be increased and the average torque also decreases. The back-EMF of BLDCM can be obtained by using the voltage equation and by multiplying the back-EMF constant and rotor speed. At a constant speed, the estimated back-EMF by using the multiplication of the back-EMF constant and rotor speed is constant, but the estimated back-EMF from the voltage equation decreases at the commutation point because the line-to-line back-EMF of two conducting phases is start to decrease at this point. Therefore, by using the difference between these two estimated back-EMFs, the commutation point of the phase current can be determined and position compensation can be carried out. The proposed position correction method doesn't require additional hardware circuit and can be easily implemented. The validity of the proposed position compensation method is verified through several experiments.

Steady-State Performance Improvement of Single-Phase PWM Inverters Using PLL Technique (PLL 기법을 이용한 단상 PWM 인버터의 정상상태 성능개선)

  • 정세교;이대식
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.356-363
    • /
    • 2004
  • This paper presents a precision voltage control technique of a single phase PWM inverter for a constant voltage and constant frequency(CVCF) applications. The proposed control scheme employs an additional phase-locked loop(PLL) compensator which is constructed using the output capacitor voltage and current. The computer simulation and experiment are carried out for the actual single-phase PWM inverter and it is well demonstrated from these results that the steady-state performance and total harmonic distortion(THD) are remarkably improved by employing the proposed technique.

Fuzzy logic Controlled Electronic Ballast for HID Lamps (HID 램프용 퍼지제어 전자식 안정기)

  • Kim, Byeong-Cheol;Cha, Hyeon-Rok;Kim, Gwang-Hyeon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.10
    • /
    • pp.587-594
    • /
    • 2002
  • A low frequency square wave electronic ballast for the high intensity discharge(HID) lamps using fuzzy logic controller is developed. This electronic ballast consists a buck converter, a low frequency square wave full bridge inverter, a high voltage pulse generator for the HID lamp ignition, an over current protection circuit and an 8-bit microcontroller. The ballast system is operated on the constant current mode during the HID lamp start-up process and the system is operated on the constant power mode during steady state. Experimental results show that the fuzzy logic control operation is carried out successfully by the 8-bit microcontroller PIC16F877 In this electronic ballast system, in spite of the limited control bandwidth caused by low operating speed of the microcontroller, the good performance in the constant lamp current characteristic is obtained. Acoustic resonance of the HID lamps can be effectively avoided because the instantaneous In lamp power is fully constant due to the low frequency square wave drive.

Design of an Integrated Current-Voltage Charging Compensator for the LLC Resonant Converter-Based Li-ion Battery Charger (LLC 공진형 컨버터 기반 리튬이온 배터리 충전기의 통합 전류-전압 보상기 설계방법 연구)

  • Choi, Yeong-Jun;Choi, See-Young;Kim, Rae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.2
    • /
    • pp.126-133
    • /
    • 2017
  • The conventional battery charger requires two separate voltage and current compensators to achieve constant current and constant-current-charging profile. This compensator configuration leads to an inevitable transient response during the mode change between the constant current and the constant voltage operation. Futhermore, a tedious and complicated design process is required to consider a widely changing battery voltage and the nonlinear electrical properties of Li-ion battery. This study proposes a single integrated voltage-current compensator of the LLC resonant converter for Li-ion battery charger applications to overcome the aforementioned drawbacks. The proposed compensator is designed to provide a smooth and reliable performance during the entire charging process while providing the reduced design efforts and seamless mode transient response. Several experimental results based on a 300 W prototype converter and its theoretical analysis are provided to verify the effectiveness of the proposed compensator.

Comparative Analysis of Maximum Driving Range of Electric Vehicle and Internal Combustion Engine Vehicle (전기자동차 및 내연기관 자동차의 최대 주행 거리 비교 분석)

  • Kim, Jeongmin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.3
    • /
    • pp.105-112
    • /
    • 2013
  • In this paper, EV (Electric Vehicle) and ICE (Internal Combustion Engine) vehicle simulators are developed to compare maximum driving range of EV and ICE vehicle according to different driving patterns. And, simulations are performed for fourteen constant velocity cases (20, 30, 40, ${\ldots}$, 150 km/h) and four different driving cycles. From the simulation results of constant velocity, it is found that the decreasing rate of maximum driving range for EV is larger than the one for ICE as both the vehicle velocity and the driving power increase. It is because the battery efficiency of EV decreases as both the velocity and the driving power increase, whereas the engine and transmission efficiencies of ICE vehicle increase. From the results of four driving cycle simulation, the maximum driving range of EV is shown to decrease by 50% if the average driving power of driving cycle increases from 10 to 20kW. It is because the battery efficiency decreases as the driving power increases. In contrast, the maximum driving range of ICE vehicle also increases as the average driving power of driving cycle increases. It is because the engine and transmission efficiencies also increase as the driving power increases.

Delayed Operation Characteristics of Power Shuttle According to Hydraulic Oil Temperature in the Hydraulic Circuit of Agricultural Tractor

  • Park, Yoon-Na;Kim, Dae-Cheol;Park, Seung-Je
    • Journal of Biosystems Engineering
    • /
    • v.40 no.2
    • /
    • pp.95-101
    • /
    • 2015
  • Purpose: During the start-up period, the response time of a hydraulic system increases in the winter because of the increased oil viscosity caused by the cold weather. The problems of delayed tractor starting and excessive wear of the clutch disk occur for these reasons. Therefore, this study develops an analysis model using the commercial hydraulic analysis program AMESim to examine the characteristics of delays in power shuttle starting at different oil temperatures. Methods: In the experiment, a tractor was stationary on a flat surface with the engine running at a constant speed of 1,080 rpm. The forward lever was then pressed to activate the power shuttle at three different oil temperatures, and the pressure changes were measured. The pressure on the forward clutch control valve was measured by a pressure gauge installed on the hydraulic line supplied to the transmission from the main valve. An analysis model was also developed and verified with actual tests. Results: The trend of the simulated pressures of the power shuttle is similar to that of the measured pressures, and a constant modulation period was observed in both the simulation and test results. However, the difference found between the simulation and test results was the initial pressure required to overcome the initial force of the clutch spring. Conclusions: This study also examines the characteristics of the delayed startup of the power shuttle at different oil temperatures through simulations.

A Novel PCCM Voltage-Fed Single-Stage Power Factor Correction Full-Bridge Battery Charger

  • Zhang, Taizhi;Lu, Zhipeng;Qian, Qinsong;Sun, Weifeng;Lu, Shengli
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.872-882
    • /
    • 2016
  • A novel pseudo-continuous conduction mode (PCCM) voltage-fed single-stage power factor correction (PFC) full-bridge battery charger is proposed in this paper. By connecting a freewheeling transistor in parallel with an input inductor, the PFC cell can operate in the PCCM with a constant duty ratio. Thus, the dc/dc stage can be designed using this constant duty ratio and the restriction on the duty ratio of the PFC cell is eliminated. As a result, the input current distortion is less and the dc bus voltage becomes controllable over the wide output power range of the battery charger. Moreover, the operation principle of the dc/dc stage is designed to be similar to that of a conventional phase-shifted full-bridge converter. Therefore, it is easy to implement. In this paper, the operation of the new converter is explained, and the design considerations of the controller and key parameters are presented. Simulation and experimental results obtained from a 1 kW prototype are given to confirm the operation of the proposed converter.

Nonlinear Control of Output Voltages of PWM Inverters for Stand-Alone Wind Power Generation (독립형 풍력발전용 PWM 인버터의 출력전압의 비선형 제어)

  • Jang, Jeong-Ik;Koo, Seoung-Young;Lee, Dong-Choon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.2
    • /
    • pp.131-138
    • /
    • 2007
  • In this paper, a novel nonlinear control method of the CVCF(constant voltage and constant frequency) output voltage for the three-phase PWM inverter with LC output filters is proposed. A nonlinear modeling including the output LC filters is linearized by feedback linearization theory, the controllers of which can be designed based on a linear control theory. It is applied to the DC/AC power conversion of the PWM inverter for stand-alone wind power generation system. It has been verified by the experimental results that the proposed control scheme gives high dynamic responses at load variation as well as a zero steady-state error.

Optimum Uplink Power/Rate Control for Minimum Delay in CDMA Networks

  • Choi, Kwon-Hue;Kim, Soo-Young
    • ETRI Journal
    • /
    • v.25 no.6
    • /
    • pp.437-444
    • /
    • 2003
  • We derive a new joint power and rate control rule with which we can minimize the mean transmission delay in CDMA networks for a given mean transmission power. We show that it is optimal to respectively control the power inverse-linearly and the rate linearly to the square root of channel gain while maintaining the signal-to-interference ratio at a constant. We also show that the proposed joint power/rate control rule achieves excellent performance results in terms of the probability of the instantaneous delay being within a target delay against one-dimensional control schemes.

  • PDF

On Power of Correlated Superposition Coding in NOMA

  • Chung, Kyuhyuk
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.360-363
    • /
    • 2020
  • We present the power of the correlated superposition coding (SC) in non-orthogonal multiple access (NOMA). This paper derives closed-form expressions for the total allocated power with the constant total transmitted power. It is shown that the total allocated power is the function of a correlation coefficient. In result, the correlated SC NOMA should be designed with consideration of the correlation coefficient.