• Title/Summary/Keyword: constant power

Search Result 2,851, Processing Time 0.033 seconds

Capacitive Voltage Divide for a Pulsed High-Voltage Measurement (펄스형 고전압 측정용 용량성 분압기)

  • Jang Sung-Duck;Son Yoon-Kyoo;Kwon Sei-Jin;Oh Jong-Seok;Cho Moo-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.2
    • /
    • pp.63-68
    • /
    • 2005
  • Total 12 units of high power klystron-modulator systems as microwave source are under operation for 2.5 GeV electron linear accelerator in Pohang Light Source (PLS) linac. The klystron-modulator system has an important role for the stable operation to improve an availability statistics of overall system performance of klystron-modulator system. RF power and beam power of klystron are precisely measured for the effective control of electron beam. A precise measurement and measurement equipment with good response characteristics are demanded for this. Input power of klystron is calculated from the applied voltage and the current on its cathode. Tiny measurement error severely effects RF output power value of klystron. Therefore, special care is needed to measure precise beam voltage. Capacitive voltage divider (CVD), which divides input voltage as capacitance ratio, is intended for the measurement of a beam voltage of 400 kV generated from the klystron-modulator system. Main parameter to determine standard capacitance in the high arm of CVD is dielectric constant of insulation oil. Therefore CVD should be designed to have a minimum capacitance variation due to voltage, frequency and temperature in the measurement range. This paper will be present and discuss the design concept and analysis of capacitive voltage divider for a pulsed high-voltage measurement, and the empirical relations between capacitance effects and oil temperature variation.

Noise Power Spectrum of Radiography Detectors: I. Measurement Using the Averages of Images (방사선 디텍터의 Noise Power Spectrum: I. 영상의 평균을 사용한 측정)

  • Kim, Dong Sik;Lee, Eunae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.12
    • /
    • pp.120-127
    • /
    • 2016
  • In order to acquire digital x-ray images, developing radiography detectors have been recently conducted based on the DR (digital radiography) technology. The noise property of the radiography detector can be observed from measuring the NNPS (normalized noise power spectrum) using uniform exposure images. Here, the image difference of two images is used to remove the fixed pattern noise in measuring the detector NNPS. In this paper, two average images are first calculated using several images and then their difference is used to calculate an NNPS value. Here, the obtained NNPS value is usually lower than the true detector NNPS due to the average. Hence, a compensation constant, which is a function of the number of used images, is also proposed to compensate the NNPS value to obtain the true detector NNPS. Furthermore, another measurement method, in which the ratio of the average images is used, is proposed. Through NNPS measuring experiments using real x-ray images, it is observed that the proposed method can provide further accurate NNPS measurements.

Design of Low Power Current Memory Circuit based on Voltage Scaling (Voltage Scaling 기반의 저전력 전류메모리 회로 설계)

  • Yeo, Sung-Dae;Kim, Jong-Un;Cho, Tae-Il;Cho, Seung-Il;Kim, Seong-Kweon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.2
    • /
    • pp.159-164
    • /
    • 2016
  • A wireless communication system is required to be implemented with the low power circuits because it uses a battery having a limited energy. Therefore, the current mode circuit has been studied because it consumes constant power regardless of the frequency change. However, the clock-feedthrough problem is happened by leak of stored energy in memory operation. In this paper, we suggest the current memory circuit to minimize the clock-feedthrough problem and introduce a technique for ultra low power operation by inducing dynamic voltage scaling. The current memory circuit was designed with BSIM3 model of $0.35{\mu}m$ process and was operated in the near-threshold region. From the simulation result, the clock-feedthrough could be minimized when designing the memory MOS Width of $2{\mu}m$, the switch MOS Width of $0.3{\mu}m$ and dummy MOS Width of $13{\mu}m$ in 1MHz switching operation. The power consumption was calculated with $3.7{\mu}W$ at the supply voltage of 1.2 V, near-threshold voltage.

A Robustness Performance Improvement of QE-MMA Adaptive Equalization Algorithm based on Dithering (Dithering을 이용한 QE-MMA 적응 등화 알고리즘의 Robustness 성능 개선)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.3
    • /
    • pp.93-98
    • /
    • 2017
  • This paper relates with the robustness performance improvement of QE-MMA (Quantized Error-MMA) adaptive equalization algorithm based on the dithering in order to reduce the intersymbol interference by nonlinear distortion occurs at channel. The QE-MMA was appeared for the easiness of H/W implementation in place of multiplication to shifting in the tap coefficient updates applying the power-of-two operation to the magnitude of error signal in currently SE-MMA, it's performance were degraded by this. For improving it's performance, the proposed DQE-MMA adds the dither signal which has constant statistical characteristics in the prestage of power-of-two operation. It was confirmed by simulation that the DQE-MMA gives better robustness performance than current QE-MMA in the same channel and signal to noise ratio.

A Parallel Inverter System with an Instantaneous Power Balance Control (순시전력 균형제어를 이용한 병렬 인버터 시스템)

  • Sun, Young-Sik;Lee, Chang-Seok;Kim, Si-Kyung;Kim, Chang-Bong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.1
    • /
    • pp.19-28
    • /
    • 2000
  • The parallel inverter is widely utilized because of its fault-tolerance capability, high-current output at constant voltages and system modularity. The conventional paralled inverter usually employes an active and reactive power control or a frequency and voltage droop control. However, these approaches have the disadvantages that the response time of parallel inverter control is slow against load and system parameter variation to calculate active, reactive power, frequency and voltage. This paper describes novel control scheme for equalization of output power between the parallel connected inverters. The proposed scheme has a fast power balance control response, a simplicity of implementation, and inherent peak current limiting capability since it employes a instantaneous current/voltage control with output voltage and current balance and output voltage regulation. A design procedure for the proposed parallel inverter controller is presented. Futhermore, the proposed constrol scheme is verified through the simulation in various cases such as the system parameter variation, the control parameter variation and the nonlinear load condition.

  • PDF

Experimental Investigation on the Embedding Motion and Holding Power of Anchor According to Initial Position (앵커의 초기 투묘 상태에 따르는 파주운동과 파주력 특성에 대한 실험적 연구)

  • Lee, Sang-Min;Lee, Jin-A
    • Journal of Navigation and Port Research
    • /
    • v.38 no.6
    • /
    • pp.683-688
    • /
    • 2014
  • The vessel should prevent dragging anchor against the external forces by utilizing the anchor and secure the stability of it. A fundamental understanding on the embedding motion and holding power of the anchor is necessary to perform the safe operating of anchor work. In this study, the embedding motion and holding power of the anchor according to an initial position in an experimental tank of 6m long in sand are tested by using two types of different anchor models(ASS and AC-14), which are generally applied to the commercial vessel nowadays. The anchor flukes seem to rotate and to be embedded into soil up to the maximum depth and maintaining a constant depth in case of the same direction and perpendicular to the towing direction, regardless of the form of an anchor. In case of the opposite direction to the towing direction, it is noted that the coefficient of holding power becomes smaller than the other initial positions.

A Calculation Method for the Nonlinear Crowbar Circuit of DFIG Wind Generation based on Frequency Domain Analysis

  • Luo, Hao;Lin, Mingyao;Cao, Yang;Guo, Wei;Hao, Li;Wang, Peng
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1884-1893
    • /
    • 2016
  • The ride-through control of a doubly-fed induction generator (DFIG) for the voltage sags on wind farms utilizing crowbar circuits by which the rotor side converter (RSC) is disabled has being reported in many literatures. An analysis and calculation of the transient current when the RSC is switched off are of significance for carrying out the low voltage ride through (LVRT) of a DFIG. The mathematical derivation is highlighted in this paper. The zero-state and zero-input responses of the transient current in the frequency domain through a Laplace transformation are investigated, and the transient components in the time domain are achieved. With the characteristics worked out from the linear resolving without modeling simplification, the selection of the resistance in the linear crowbar circuit and the value conversion from a linear circuit to a nonlinear one is proposed to setup the attenuation rate. In terms of grid code requirements, the theoretical analysis for the time constant of the transient components attenuation insures the controllability when the excitation of the RSC is resumed and it guarantees the reserved time for the response of the reactive power compensation. Simulations are executed in MATLAB/SIMPOWER and experiments are carried out to validate the theoretical analysis. They indicate that the calculation method is effective for selection of the resistance in a crowbar circuit for LVRT operations.

Improved Power Allocation to Enhance the Capacity in OFDMA System for Proportional Resource Allocation (Proportional 자원할당을 위한 OFDMA 시스템에서 채널 용량을 증대시키기 위한 향상된 전력 할당 기법)

  • Var, Puthnith;Shrestha, Robin;Kim, JaeMoung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.7
    • /
    • pp.580-591
    • /
    • 2013
  • The Orthogonal Frequency Division Multiple Access (OFDMA) is considered as a novel modulation and multiple access technique for 4th generation wireless systems. In this paper, we formulate a base station's power allocation algorithm for each user to maximize the user's sum rate, subject to constraints on total power, bit error rate, and rate proportionality among the users for a better proportional rate adaptive (RA) resource allocation method for OFDMA based system. We propose a novel power allocation method based on the proportion of subcarrier allocation and the user's normalized proportionality constant. We adapt a greedy algorithm and waterfilling technique for allocating the subcarriers among the users. In an end-to-end simulation, we validate that the proposed technique has higher system capacity and lower CPU execution times, while maintaining the acceptable rate proportionality among users.

A Study on the Energy Consumption Cost in the Winter and Calorific Value by Insulated Gang-form (단열갱폼 적용에 따른 동절기 보양비 사용량 및 발열량 검토에 관한 실험적 연구)

  • Nam, Kyung-Yong;Choi, Suk;Ahn, Sung-Jin;Lim, Myung-Kwan
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.1
    • /
    • pp.53-60
    • /
    • 2020
  • This paper aims to examine the insulation performance of insulated gang form by changing the energy (power) consumption and concrete calorific value to assist in concrete protection in cold weather. According to the test results, the general gang form will generate three times the energy (power) consumption for 12 hours after the concrete is poured. In contrast, insulated gang foam consumed no energy (power) for 21 hours after pouring. The final power consumption was 3.7 times higher than that of the general gang form, confirming the improved performance of insulated gang form with regard to energy (power) consumption. The calorific value examination shows that the calorific value changes significantly according to the change of outside temperature after concrete placement in the case of the general gang form. However, in the case of the insulated gang form, only a slight heat loss occurred in the part of the frame, and it showed a constant heating pattern from the concrete casting to the demolding of the mold.

A Study on the Effects of Hydrogen Addition and Swirl Intensity in CH4-Air Premixed Swriling Flames (메탄-공기 예혼합 선회화염에서 수소첨가와 선회강도 영향에 관한 연구)

  • KIM, HAN SEOK;CHO, JU HYEONG;KIM, MIN KUK;HWANG, JEONGJAE;LEE, WON JUNE
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.6
    • /
    • pp.593-600
    • /
    • 2019
  • The combustion characteristics of methane/hydrogen pre-mixed flame have been investigated with swirl stabilized flame in a laboratory-scale pre-mixed combustor with constant heat load of 5.81 kW. Hydrogen/methane fuel and air were mixed in a pre-mixer and introduced to the combustor through a burner nozzle with different degrees of swirl angle. The effects of hydrogen addition and swirl intensity on the combustion characteristics of pre-mixed methane flames were examined using particle image velocimetry (PIV), micro-thermocouples, various optical interference filters and gas analyzers to provide information about flow velocity, temperature distributions, and species concentrations of the reaction field. The results show that higher swirl intensity creates more recirculation flow, which reduces the temperature of the reaction zone and, consequently, reduces the thermal NO production. The distributions of flame radicals (OH, CH, C2) are dependent more on the swirl intensity than the percentage of hydrogen added to methane fuel. The NO concentration at the upper part of the reaction zone is increased with an increase in hydrogen content in the fuel mixture because higher combustibility of hydrogen assists to promote faster chemical reaction, enabling more expansion of the gases at the upper part of the reaction zone, which reduces the recirculation flow. The CO concentration in the reaction zone is reduced with an increase in hydrogen content because the amount of C content is relatively decreased.