DOI QR코드

DOI QR Code

Noise Power Spectrum of Radiography Detectors: I. Measurement Using the Averages of Images

방사선 디텍터의 Noise Power Spectrum: I. 영상의 평균을 사용한 측정

  • Received : 2016.10.17
  • Accepted : 2016.11.25
  • Published : 2016.12.25

Abstract

In order to acquire digital x-ray images, developing radiography detectors have been recently conducted based on the DR (digital radiography) technology. The noise property of the radiography detector can be observed from measuring the NNPS (normalized noise power spectrum) using uniform exposure images. Here, the image difference of two images is used to remove the fixed pattern noise in measuring the detector NNPS. In this paper, two average images are first calculated using several images and then their difference is used to calculate an NNPS value. Here, the obtained NNPS value is usually lower than the true detector NNPS due to the average. Hence, a compensation constant, which is a function of the number of used images, is also proposed to compensate the NNPS value to obtain the true detector NNPS. Furthermore, another measurement method, in which the ratio of the average images is used, is proposed. Through NNPS measuring experiments using real x-ray images, it is observed that the proposed method can provide further accurate NNPS measurements.

디지털 x선 영상을 획득하기 위하여 최근에는 DR(digital radiography) 기술에 근거한 방사선 디텍터의 개발이 활발하게 진행되고 있다. 이러한 방사성 디텍터의 잡음 특성은, 균일한 노출에서 획득한 영상을 사용하여 NNPS(normalized noise power spectrum)를 측정하여 관찰한다. 이때 고정형태잡음(fixed pattern noise)을 제거하기위하여 두 장의 영상 차를 사용한다. 본 논문에서는 보다 정확한 NNPS를 측정하기 위하여, 먼저 여러 장의 영상을 획득하여 두 장의 평균영상을 구하고 그의 차를 사용하여 NNPS를 구하는 방법을 제안하였다. 이때 여러 장의 영상들의 평균으로 인하여 NNPS 값이 실제 값보다 작아지는데, 이러한 NNPS의 보정을 위하여, 평균할 때 사용한 영상 개수의 함수인 보정 상수도 함께 제안하였다. 또한 평균영상의 비를 사용하여 NNPS를 구하는 방법도 제안하였다. 실제 방사선 디텍터에서 획득한 영상을 사용하여 NNPS를 측정하는 실험을 통하여, 제안한 방법으로 NNPS 보다 정확하게 구할 수 있음을 관찰하였다.

Keywords

References

  1. R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd. ed., Prentice Hall: NY, 2008.
  2. J. G. Proakis and D. K. Manolakis, Digital Signal Processing, 4th ed. Upper Saddle River, NJ, USA: Prentice-Hall, 2007.
  3. J. A. Rowlands, "The physics of computed radiography," Phys. Med. Biol., vol. 47, no. 23, pp. R123-R166, Dec. 2002. https://doi.org/10.1088/0031-9155/47/23/201
  4. D. L. Lee, L. K. Cheung, and L. S. Jeromin, "A new digital detector for projection radiography," in Proc. SPIE, Medical Imaging: Phys. Med. Imaging, vol. 2432, pp. 237-249, 1995.
  5. D. S. Kim and E. Kim, "Noise power spectrum of the fixed pattern noise in digital radiography detectors," Med. Phys., vol. 43, no. 6, pp. 1765-2773, June 2016.
  6. J. T. Dobbins, Ch. 3 Image Quality Metrics for Digital Systems, Handbook of Medical Imaging: Vol. 1. Physics and Psychophysics, SPIE, Washington, 2000.
  7. D. S. Kim, "Noise power spectrum measurements in digital imaging with gain nonuniformity correction," IEEE Trans. Image Processing, vol. 25, no. 8, pp. 3712-3722, Aug. 2016. https://doi.org/10.1109/TIP.2016.2574985
  8. M. B. Williams, P. A. Mangiafico, and P. U. Simoni, "Noise power spectra of images from digital mammography detectors," Med. Phys., vol. 26, no. 7, pp. 1279-1293, Jul. 1999. https://doi.org/10.1118/1.598623
  9. Z. Zhou, F. Gao, H. Zhao, and L. Zhang, "Techniques to improve the accuracy of noise power spectrum measurements in digital X-ray imaging based on background trends removal," Med. Phys., vol. 38, no. 3, pp. 1600-1610, Mar. 2011. https://doi.org/10.1118/1.3556566
  10. D. A. Cunningham, "Applied linear-system theory," in Handbook of Medical Imaging: Physics and Psychophysics, vol. 1, Washington DC, USA: SPIE, 2000, ch. 2.
  11. D. S. Kim, E. Kim, and S. Lee, "Performance analysis of the gain correction in radiography imaging," in Proc. IEEE Int. Conf. Image Processing, pp. 3641-3645, 2014.
  12. R. M. Gray and L. D. Davisson, Random Process: Mathematical Approach for Engineers, Upper Saddle River, NJ, USA: Prentice-Hall, 1986.
  13. IEC62220-1, Characteristics of Digital X-ray Imaging Devices-Part1: Determination of the Detective Quantum Efficiency, International Electro Technical Commission Report, 2003.
  14. A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, 3rd ed. Upper Saddle River, NJ, USA: Pearson Education, 2009.
  15. J. A. Seibert, J. M. Boone, and K. K. Linfors, "Flat-field correction technique for digital detectors," in Proc. SPIE Medical Imaging: Phys. Med. Imaging, vol. 3336, pp. 348-354, 1998.
  16. J. P. Moy and B. Bosset, "How does real offset and gain correction affect the DQE in images from x-ray flat detector," in Proc. Medical Imaging: Phys. Med. Imaging, vol. 3659, pp. 90-97, 1999.
  17. B. Rodricks, D. L. Lee, M. Hoffberg, and C. Williams, "Filtered gain calibration and its effect on DQE and image quality in digital imaging," in Proc. SPIE Medical Imaging: Phys. Med. Imaging, vol. 3977, pp. 477-486, 2000.
  18. D. S. Kim, E. Kim, and S. Lee, "Performance analysis of the gain correction in radiography imaging," in Proc. IEEE Int. Conf. Image Process., Oct. 2014, pp. 3641-3645.
  19. D. S. Kim, "Nonuniform gain correction based on the filtered gain map in radiography image detectors," Jour. Inst. Electr. Inform. Eng. vol. 53, no. 4, April 2016.
  20. E. Lee and D. S. Kim, "Noise power spectrum of radiography detectors: II. measurement based on the spectrum averaging," Jour. Inst. Electr. Inform. Eng., 2016 (submitted).

Cited by

  1. On the performance of the noise power spectrum from the gain-corrected radiography images vol.5, pp.01, 2018, https://doi.org/10.1117/1.JMI.5.1.013508