DOI QR코드

DOI QR Code

Color Modification Detection Using Normalization and Weighted Sum of Color Components

컬러 성분의 정규화와 가중치 합을 이용한 컬러 조작 검출

  • Shin, Hyun Jun (Dept. Electronics Eng., Pusan National University) ;
  • Jeon, Jong Ju (Dept. Electronics Eng., Pusan National University) ;
  • Eom, Il Kyu (Dept. Electronics Eng., Pusan National University)
  • Received : 2016.08.24
  • Accepted : 2016.11.16
  • Published : 2016.12.25

Abstract

Most commercial digital cameras acquire the colors of an image through the color filter array, and interpolate missing pixels of the image. Because of this fact, original pixels and interpolated pixels have different statistical characteristics. If colors of an image are modified, the color filter array pattern that consists of RGB channels is changed. Using this pattern change, a color forgery detection method were presented. The conventional method uses the number of pixels that exceeds the maximum or minimum value of pre-defined block by only exploiting green component. However, this algorithm cannot remove the flat area which is occurred when color is changed. And the conventional method has demerit that cannot detect the forged image with rare green pixels. In this paper, we propose an enhanced color forgery detection algorithm using the normalization and weighted sum of the color components. Our method can reduce the detection error by using all color components and removing flat area. Through simulations, we observe that our proposed method shows better detection performance compared to the conventional method.

대부분의 디지털 카메라는 컬러 필터 어레이를 통하여 영상의 컬러를 획득하고 비어 있는 화소를 보간하는 방법을 사용한다. 이로 인해 원 화소와 보간된 화소는 서로 다른 통계적 특정을 가지고 있다. 영상에 컬러 조작이 일어나면, RGB 컬러 채널로 이루어진 컬러 필터 어레이의 패턴에 변화가 생기게 된다. 이러한 특성을 이용하여 영상의 컬러 조작 검출 방법이 제안되었다. 기존의 방법은 녹색 채널의 값만을 이용하여 미리 정해진 블록 내에서 최댓값 또는 최솟값을 벗어나는 화소의 수를 이용하고 있다. 그러나 이러한 방법은 색상을 변화시킬 때 발생하는 평탄 영역을 제거하기 못하며, 녹색이 거의 없는 영상에 대한 조작을 검출 할 수 없는 단점이 존재한다. 본 논문에서는 컬러 채널의 정규화와 가중치 합을 이용한 개선된 컬러 조작 검출 방법을 제안한다. 본 논문의 방법은 색상을 변화시킬 때 발생하는 평탄한 영역을 제거하고, 모든 색상을 사용하기 때문에 조작 검출의 오차를 줄일 수 있다. 실험을 통하여 제안 방법이 기존의 방법과 비교하여 우수한 컬러 조작 검출 성능을 보임을 확인 할 수 있었다.

Keywords

References

  1. H. Farid, "A survey of image forgery detection", IEEE Signal Process Mag, vol. 2, no.26, pp. 16-25, 2009.
  2. G. K. Birajdar, and V. H. Mankar, "Digital image forgery detection using passive techniques: A survey", Digital Invest, vol. 10, no. 3, pp. 226-245, 2013. https://doi.org/10.1016/j.diin.2013.04.007
  3. R. Davarzani, K. Yaghmaie, S. Mozaffari, and M. Tapak, "Copy-move forgery detection using multi resolution local binary patterns", Forensic science international, vol. 231, pp. 61-72, 2013. https://doi.org/10.1016/j.forsciint.2013.04.023
  4. J. J. Jeon, S. H. Park, Y. I. Kim, and I. K. Eom, "Copy-rotate-move forged region detection using compensation of coordinate shift by rotation", Journal of KIIT, vol. 13, no. 10, pp. 51-58, 2015.
  5. X. Zhao, S. Wang, S. Li, and J. Li, " Passive miage-splicing detection by a 2-D noncausal Markov model", IEEE Trans. Circuits Syst. Video Technol, vol. 25, no. 2, pp. 185-199, 2015. https://doi.org/10.1109/TCSVT.2014.2347513
  6. J. G. Han, T. H. Park, Y. H. Moon and I. K. Eom, "Efficient markov feature extraction method for image splicing detection using maximization and threshold expansion", Journal of Electronic Imaging, vol. 25, no. 2, pp. 023031-1-023031-8, 2016. https://doi.org/10.1117/1.JEI.25.2.023031
  7. H. Cao and A. C. Kot, "Manipulation detection on image patches using FusionBoost", IEEE Trans. Inf. Forensics Secur., vol. 7, no. 3, pp. 992-1002, 2012. https://doi.org/10.1109/TIFS.2012.2185696
  8. B. G. Jeong, Y. H. Moon, and I. K. Eom, "Blind identification of image manipulation type using mixed statistical moments", Journal of Electronic Imaging, vol. 24, no. 1, pp. 013029-1-013029-12, 2015. https://doi.org/10.1117/1.JEI.24.1.013029
  9. C. H. Choi, H. Y. Lee, and H. K. Lee, "Estimation of color modification in digital images by CFA pattern change", Forensic science international, vol. 226, pp. 94-105, 2013. https://doi.org/10.1016/j.forsciint.2012.12.014
  10. J. R. Seo and I. K. Eom, "Forged color region detection using color pattern decomposition and hypothesis test", Journal of IEIE, vol. 52, no. 7, pp. 77-85, 2015.
  11. B. Gunturk, J. Glotzbach, Y. Altunbasak, R. Schafer, and R. Mersereau, "Demosaicking: color filter array interpolation", IEEE Sig. Process. Magazine, pp. 44-54, 2005.
  12. A. C. Popescu, and H. Farid, "Exposing digital forgeries in color filter array interpolated images", IEEE Trans. signal process, vol. 54, no. 10, pp. 3948-3959, 2005.
  13. A. C. Kot, "Accurate detection of demosaicking regularity for digital image forensics", IEEE Trans. Inf. Forensics Secur, vol. 4, no. 4, pp. 899-910, 2009. https://doi.org/10.1109/TIFS.2009.2033749
  14. P. Ferrara, T. Bianchi, A. De Rosa, and A. Piva, "Image forgery localization via fine-grained analysis of CFA artifacts", IEEE Trans. Inf. Forensics Secur, vol. 7, no. 5, pp. 1566-1577, 2012. https://doi.org/10.1109/TIFS.2012.2202227
  15. C. H. Choi, J. H. Choi, and H. K. Lee, "CFA pattern identification of digital cameras using intermediate value counting", Proceedings of the Thirteenth ACM Multimedia Workshop on Multimedia and Security, MM&Sec '11, ACM, New York, NY, USA, pp. 21-26, 2011.
  16. E. Chang, S. Cheung and D. Y. Pan. "Color filter array recovery using a threshold-based variable number of gradients", Proceedings of SPIE, Sensors, Cameras, and Applications for Digital Photography, pp. 36-43, 1999.
  17. T. Gloe and R. Bohme, "The 'Dresden Image Database' for benchmarking digital image forensics", Proceedings of the 25th Symposium On Applied Computing (ACM SAC 2010), vol. 2, pp. 1585-1591, 2010.
  18. G. Horvath, http://www.rawtherapee.com/
  19. K. Hirakawa and T. W. Parks, "Adaptive homogeneity directed demosaicing algorithm", IEEE Trans. Image Process., vol. 14, no, 3 pp. 360-369, 2005. https://doi.org/10.1109/TIP.2004.838691
  20. E. Martinec and P. Lee, "AMAZE Demosaicing Algorithm", 2010. http://www.rawtherapee.com/.
  21. L. Zhang and X. Wu, "Color demosaicking via directional linear minimum mean square-error estimation, " IEEE Trans. Image Process, vol. 14, no. 12, pp. 2167-2178, 2005. https://doi.org/10.1109/TIP.2005.857260
  22. C. Y. Tsai and K. T. Song, "Heterogeneity projection hard-decision color interpolation using spectral-spatial correlation", IEEE Trans. Image Process, vol. 16, no. 11, pp. 78-91, 2007. https://doi.org/10.1109/TIP.2006.884943
  23. Jacek Gozdz, DCB demosaicing algorithm. http://www.linuxphoto.org/html/dcb.html.