• Title/Summary/Keyword: consolidation creep

Search Result 50, Processing Time 0.025 seconds

Evaluation of Consolidation Properties in Soft Soils Using Elastic and Electromagnetic Waves (전단파와 전자기파를 이용한 연약 지반의 실내 압밀 특성 평가)

  • Lee, Chang-Ho;Yoon, Hyung-Koo;Kim, Joon-Han;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.8
    • /
    • pp.25-34
    • /
    • 2008
  • A new hybrid oedometer cell is designed and manufactured to investigate a behavior of soft soils by using elastic and electromagnetic waves during consolidation test. Bender elements, which generate and detect shear waves, are placed in the top cap and the bottom plate and mounted on the oedometer wall. Double wedge type electrical resistance probe, which measures local void ratio change, is positioned onto the top cap of the oedometer cell. The bender elements and the electrical resistance probe are anchored into a nylon set screw with epoxy resin. The nylon set screw with epoxy resin minimizes directly transmited elastic waves through the oedometer cell due to impedence mismatch and allows for easy replacement of defected bender elements and electrical resistance probe. Primary consolidation time can be estimated from the slope of electrical resistance versus log time curve and the evolution of shear wave velocity. The shear wave velocity can be used to assess inherent anisotropy when disturbance effects are minimized because particle alignment affects the shear wave velocity. The void ratios evaluated by the electrical resistance probe are similar to those by the settlement during consolidation. This study suggests that the shear wave velocity and the electrical resistance can provide complementary imformations to understand consolidation characteristics such as primary consolidation, anisotropy, and void ratio.

Prediction and Field Measurement of Settlement due to Preloading at the Delta of Nakdong River (낙동강 삼각주에서 선행하중에 따른 침하예측 및 현장계측)

  • 정성교;백승훈;김규종;이대명
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.5
    • /
    • pp.99-110
    • /
    • 1999
  • Settlement and consolidation time were predicted through systematic soil investigation at the delta of Nakdong river where the preloading method was applied. Field measurements were executed with well-selected instruments. As the results of the comparison, the predicted settlement on the sand layer of about 20m thick underestimated the observed one by 20%. This underestimation was due to the effects of vibration during installation of PBD, creep, the overestimated deformation modulus, and so on. For the clay layer of about 20m in thickness under the sand layer, an ID analysis for underconsolidated soil initially overestimated the observed settlement by 240%. However, when the laboratory compression curve was reconstructed and a conventional ID analysis for NC clay was applied, the re-calculated settlement of the clay layer was relatively similar with the observed one. And the predicted consolidation time was about 45% less than the observed one, because of different influencing factors.

  • PDF

Can design for Blisk of Nickel-base Superalloy Powder (분말합금을 이용한 블리스크 제조용 캔 설계)

  • Lim J. S.;Yeom J. T.;Kwon Y. S.;Park N. K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.171-174
    • /
    • 2004
  • Superalloys with many strengthening alloying elements are frequently used in powder form to alleviate harmful effects of alloy segregation. HIP (hot isostatic pressing) and DB (diffusion bonding) as a form of solid-state bonding process is often used to make turbine components, such as integrated turbine rotors. HIP/DB process requires many technical overcomes related to dimensional changes as well as microstructural control. In this research, HIP/DB process for nickel base superalloys, Udimet 720, were investigated with a view to control the dimensional change during the consolidation process. Simple disc-shaped cans were used to select the conceptual die design for the control of the dimensional change especially in radial direction. The change in the shape of consolidated shape was investigated using commercial FE code with constitutive equations for low temperature plasticity and creep deformation.

  • PDF

Deformation Characteristics of Subgrade Materials and Soil at Abutment (노상토 및 보조기층 재료의 변형특성)

  • Song, Chang-Seop;Lim, Seong-Yoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.3
    • /
    • pp.105-111
    • /
    • 2010
  • It is very important to select carefully backfill materials and build for the structural integrity of abutment in bridge. In general, backfill materials of unbound crushed stones (SB-1) are used to provide the safety of abutment structure and to reduce differential settlement around abutment that is significantly related with performance of road pavement under working conditions. In this study, to evaluate the compatibility of backfill materials at abutment and to develop the abutment design program, i) basic properties of subgrade soils in Korea, ii) evaluation of deformational characteristics of backfill materials from RC/TS tests, cyclic TX tests and Creep tests were accomplished.

Comparison of Time-Dependent Deformation in Unconsolidated Mudstones with Different Clay Content (점토함량에 따른 미고결 이암의 시간 의존적 변형 비교)

  • Chang, Chan-Dong;Myoung, Woo-Ho;Lee, Tae-Jong
    • The Journal of Engineering Geology
    • /
    • v.18 no.2
    • /
    • pp.207-214
    • /
    • 2008
  • We conducted uniaxial consolidation tests in mudstone samples with different clay content, in order to investigate time-dependent deformation and its characteristics. A significant amount of time-dependent strain was observed at a constant stress level immediately after a jump of stress was applied. For a given mudstone, the amount of time-dependent deformation was nearly proportional to the increment of stress, suggesting a linear viscous rheology. The amount of time-dependent strain increases with clay content, implying that clay plays an important role in creep of the unconsolidated mudstone. A power-law model was suitably applied to our results, suggesting that a short-term prediction of time-dependent deformation of the mudstone is tentatively feasible.

An Analysis of the Effect of PBD Discharge Capacity to Leave Period (방치기간에 따른 PBD의 통수능 효과 분석)

  • Lee, Keeyong;Park, Minchul;Jeong, Sangguk;Lee, Song
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.10
    • /
    • pp.39-49
    • /
    • 2011
  • Recently PBD method, one of acceleration of consolidation methods is used in the soft ground to shorten consolidation time for fast settlement during construction. It is economical and easy to work. Discharge capacity of PBD is sensitive in proportion to thickness of soft ground layer, and drainage of PBD declines due to disturbance effect in surrounding ground by mandrel used for vertical drainage setting and setting machines and type. Also, deviation of discharge capacity is large according to ground condition, construction condition and soil properties. In addition, when embankment loading is not conducted instantly after PBD setting due to rain or lack of embankment material supply, it causes leaving period problems. But cause and analysis of those problems for discharge capacity is lack. So, in this test, ground improvement and discharge capacity is investigated by implementing composite discharge capacity test for analysis of an effect factor of PBD discharge capacity with leaving period. After fixing the vertical drain on a cylindrical cylinder, put churned sample into the cylinder. Then leave 0day, 30day, 60day and 90day. And then, load following the loading step of 30, 70 and 120kPa using a pressure device. As a result, the longer leaving period, discharge capacity is reduced. It is caused by a decrease of discharge area caused by creep transformation moisture absorption of PBD filter after long leaving period.

Settlement of Embankment and Foundation for Concrete Track of Gyungbu High Speed Railroad (경부고속철도 콘크리트궤도 토공 및 원지반 침하 (I))

  • Yang, Shin-Chu;Moon, Jae-Suk;Lee, Hyun-Jung;Kang, Dae-Woong;Kim, Dae-Sang
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.6 s.37
    • /
    • pp.644-651
    • /
    • 2006
  • An application of concrete track is being actively processed for the construction of Korean railroad. The concrete track has an advantage to decrease the maintenance ire, but is very difficult system to maintain after earthwork settlement occurred. Therefore, the management and control of embankment and foundation settlement is very important for the successful concrete track construction. We expect that the main part of the settlement of the concrete track is the one of embankment and foundation supporting it. Settlements vulnerable to the concrete track among the causes of lots of settlements are primary consolidation and secondary compression settlement of foundation, creep settlement of embankment, settlement caused by train load, and unequal settlement resulting from the difference of embankment material and construction process. This paper investigated the settlement causes to make badly effects on the concrete track and also evaluated the settlement with field tests and numerical analysis.

A Perfomance Evaluation of the Deformation-Compatible Vertical Drain (DCVD 배수재의 성능평가)

  • Song, Seok-Kyu;Chun, Youn-Chul;Shim, Jai-Beom;Shim, Seong-Hyeon;Kim, Young-Uk;Lee, Seok-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.692-701
    • /
    • 2009
  • The use of vertical drain method to improve the soft soil ground has been continuously increased in Korea such as Busan New Port, Saemangeum reclamation project and so on in Korea. Especially PBD(Plastic Board Drain), one of the vertical drain, has been widely used due to the economic feasibility, construction compatibility and quality control. However in case of using PBD, discharge capacity reduction caused by creep deformation of the PBD filter, bending, kinking and so on can be occurred. Therefore the purpose of this study is to solve these problems by developing Deformation-Compatible Vertical Drain, DCVD which allows to deform with consolidation settlement without bending and kinking of vertical drain. In order to investigate the performance of DCVD developed in this study, discharge capacity test, centrifuge model test and complex discharge capacity test for both PBD and DCVD are performed and the results are compared.

  • PDF

A Case Study on Soft Soil Treatment Design and Construction in Vietnam (베트남지역에서의 연약지반 개량 설계.시공 사례)

  • Yoon, Dong-Duk;Cho, Sung-Han;Seo, Won-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.336-345
    • /
    • 2010
  • GS E&C was awarded the contract for the construction of Hanoi - Hai Phong Expressway Package EX-7 from Station Km 72+000 to Station Km 81+300 in December 2008. This project is the $7^{th}$ contract package of the 105.5 km long expressway near Hai Phong city, which includes a FCM-styled bridge along with high embankments over soft ground. For these high embankments, there is a need to treat the soft soil for improving the overall stability during construction and for reducing the post-construction settlement of the expressway. The Designer of this project had adopted four (4) different types of ground improvement techniques to treat the soft ground, including the prefabricated vertical drains (PVD), sand drains (SD), pack drains (PD, or sometimes called packed sand drains), and sand compaction piles (SCP). The main focus of soft soil treatment should be paid attention to the residual settlement after construction. In current design, however, it appeared that the secondary compression (or creep) of the improved soil layer and the consolidation settlement of the lower untreated compressible soil layer have been neglected in the estimation of the post-construction settlement. These uncalculated residual settlements may not only unsatisfy the design criteria but also raise serious problems during service period of this expressway. In this paper, the subsoil condition and current design were reviewed focusing on the employed soft soil treatment method and expected residual settlement.

  • PDF

A Feasibility Study on the Use of Liner and Cover Materials Using Sewage Sludge (하수슬러지의 차수재 및 복토재로의 이용타당성에 관한 연구)

  • 유남재;김영길;박병수;정하익
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.2
    • /
    • pp.43-71
    • /
    • 1999
  • This research is an experimental work of developing a construction material using municipal wastewater sludge as liner and cover materials for waste disposal landfill. Weathered granite soil and flyash, produced as a by-product in the power plant, were used as the primary additives to improve geotechnical engineering properties of sludge. For secondary additives, bentonite and cement were mixed with sludge to decrease the permeability and to increase the shear strength, respectively. Various laboratory test required to evaluate the design criteria for liner and cover materials, were carried out by changing the mixing ratio of sludge with the additives. Basic soil properties such as specific gravity, grain size distribution, liquid and plastic limits were measured to analyze their effects on permeability, compaction, compressibility and shear strength properties of mixtures. Laboratory compaction tests were conducted to find the maximum dry densities and the optimum moisture contents of mixtures, and their effectiveness of compaction in field was consequently evaluated. Permeability tests of variable heads with compacted samples, and the stress-controlled consolidation tests with measuring permeabilities of samples during consolidation process were performed to obtain permeability, and to find the compressibility as well as consolidational coefficients of mixtures, respectively. To evaluate the long term stability of sludges, creep tests were also conducted in parallel with permeability tests of variable heads. On the other hand, for the compacted sludge decomposed for a month, permeability tests were carried out to investigate the effect of decomposition of organic matters in sludges on its permeability. Direct shear tests were performed to evaluate the shear strength parameters of mixed sludge with weathered granite, flyash and bentonite. For the mixture of sludge with cement, unconfined compression tests were carried out to find their strength with varying mixing ratio and curing time. On the other hand, CBR tests for compacted specimen were also conducted to evaluate the trafficability of mixtures. Various test results with mixtures were assessed to evaluate whether their properties meet the requirements as liner and cover materials in waste disposal landfill.

  • PDF