• Title/Summary/Keyword: conserved domain

Search Result 297, Processing Time 0.024 seconds

효모시스템에서 Human Transglutaminase C(TGase II)의 발현에 관한 연구 : C-말단부위의 결손효과

  • Woo, Sang-Kyu;Jung, Sun-Mi;Rhee, Sang-Ki;Ahn, Byeong-Yoon;Kim, Hee-Chul
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.3
    • /
    • pp.290-298
    • /
    • 1996
  • In an effort to understand the role of the conserved domain and of the heterologous one-third part of the carboxy terminal domain of transglutaminase C (TGase II), attempts were made to express TGase II cDNA of human origin in yeast Saccharomyces cerevisiae as in a full-length form as well as in a form of C-terminal truncation. The 2$\mu$-based expression plasmids which contained the TGase II cDNA under the gal inducible promoter were introduced into yeast and the maintenance of the full-length and truncated form of the TGase II gene plasmids were confirmed by Southern blot. The expression of the TGase II gene was analysed by reverse transcription polymerase chain reaction (RT-PCR), and western blot analyses. As assayed by [1,4$^{14}$C]-putrescine incorporation into succinylated casein, the full-lenth as well as the truncated forms of recombinant TGase II showed some catalytic activity. These results indicate that the N-terminal homologous domain of human TGase II retains a catalytically active domain. The level of TGase II expressed in yeast, however, was far lower than satisfactory and other expression system should be sought further chracterization of the enzyme. The negative effect of TGase II on the growth of yeast is interesting with respect to the physiological effect of TGase II in cornification of epidermal keratinocytes.

  • PDF

Molecular Cloning and Characterization of a Novel Calcium-dependent Protein Kinase Gene IiCPK2 Responsive to Polyploidy from Tetraploid Isatis indigotica

  • Lu, Beibei;Ding, Ruxian;Zhang, Lei;Yu, Xiaojing;Huang, Beibei;Chen, Wansheng
    • BMB Reports
    • /
    • v.39 no.5
    • /
    • pp.607-617
    • /
    • 2006
  • A novel calcium-dependent protein kinase gene (designated as IiCPK2) was cloned from tetraploid Isatis indigotica. The full-length cDNA of IiCPK2 was 2585 bp long with an open reading frame (ORF) of 1878 bp encoding a polypeptide of 625 amino acid residues. The predicted IiCPK2 polypeptide included three domains: a kinase domain, a junction domain (or autoinhibitory region), and a C-terminal calmodulin-like domain (or calcium-binding domain), which presented a typical structure of plant CDPKs. Further analysis of IiCPK2 genomic DNA revealed that it contained 7 exons, 6 introns and the length of most exons was highly conserved. Semi-quantitative RT-PCR revealed that the expression of IiCPK2 in root, stem and leaf were much higher in tetraploid sample than that in diploid progenitor. Further expression analysis revealed that gibberellin ($GA_3$), NaCl and cold treatments could up-regulate the IiCPK2 transcription. All our findings suggest that IiCPK2 might participate in the cold, high salinity and GA3 responsive pathways.

Identification of Bak-like Protein cDNA (Bak-like 단백질을 code하는 cDNA의 동정)

  • 김진경
    • YAKHAK HOEJI
    • /
    • v.45 no.4
    • /
    • pp.426-430
    • /
    • 2001
  • Cells are eliminated in a variety of physiological settings by apoptosis, a genetically encoded process of cellular suicide. Bak, a member of the Bcl-2 protein family, accelerates apoptosis by an unknown mechanism. We have found a novel cDNA encoding a 101 amino acid protein possessing a Bak-like in our full-length cDNA bank. Bak-like shares the conserved domains BHI and 2 with other proapoptotic proteins but lacks the BH3 domain. Bak-like is expressed in a wide variety of tissues. Like Bak, Bak-like gene product primarily enhances apoptotic cell death following an appropriate stimulus.

  • PDF

Leucine Zipper as a Fine Tuner for the DNA Binding; Revisited with Molecular Dynamics Simulation of the Fos-Jun bZIP Complex

  • 최용훈;양철학;김현원;정선호
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.11
    • /
    • pp.1319-1322
    • /
    • 1999
  • Leucine zipper dynamically tunes the degree of bifurcation of the DNA binding segments in the basic region of the Fos-Jun bZIP complex. Molecular dynamics simulation indicated that site-specific mutagenesis of conserved leucine residues inside the leucine zipper domain caused the change of dynamic behavior of the basic region, and efficient DNA binding occurs only within a certain range of distance between the two DNA binding segments in the basic region. Distribution of α-helices in the hinge region is also suggested to influence the bifurcation of the DNA binding segments.

Role of a Putative N-Glycosylation Site in Bovine Retinal Cyclic Nucleotide-Gated Channel

  • Park, Seong-Hwan;Park, Chul-Seung
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1997.07a
    • /
    • pp.25-25
    • /
    • 1997
  • Cyclic nucleotide-gated channels (CNGC's) contain a putative N-glycosylation site (Asn-X-Ser/Thr) in the linker regions connecting the fourth transmembrane domain (S4) and the ion conduction pore (P-region). This putative N-glycosylation site is highly conserved and thus found in many different CNGC in various organisms, from fruit to human.(omitted)

  • PDF

Biochemical characteristics of functional domains using feline foamy virus integrase mutants

  • Yoo, Gwi-Woong;Shin, Cha-Gyun
    • BMB Reports
    • /
    • v.46 no.1
    • /
    • pp.53-58
    • /
    • 2013
  • We constructed deletion mutants and seven point mutants by polymerase chain reaction to investigate the specificity of feline foamy virus integrase functional domains. Complementation reactions were performed for three enzymatic activities such as 3'-end processing, strand transfer, and disintegration. The complementation reactions with deletion mutants showed several activities for 3'-end processing and strand transfer. The conserved central domain and the combination of the N-terminal or C-terminal domains increased disintegration activity significantly. In the complementation reactions between deletion and point mutants, the combination between D107V and deletion mutants revealed 3'-end processing activities, but the combination with others did not have any activity, including strand transfer activities. Disintegration activity increased evenly, except the combination with glutamic acid 200. These results suggest that an intact central domain mediates enzymatic activities but fails to show these activities in the absence of the N-terminal or C-terminal domains.

Kinetic analysis of Drosophila Vnd protein containing homeodomain with its target sequence

  • Yoo, Si-Uk
    • BMB Reports
    • /
    • v.43 no.6
    • /
    • pp.407-412
    • /
    • 2010
  • Homeodomain (HD) is a highly conserved DNA-binding domain composed of helix-turn-helix motif. Drosophila Vnd (Ventral nervous system defective) containing HD acts as a regulator to either enhance or suppress gene expression upon binding to its target sequence. In this study, kinetic analysis of Vnd binding to DNA was performed. The result demonstrates that DNA-binding affinity of the recombinant protein containing HD and NK2-specific domain (NK2-SD) was higher than that of the full-length Vnd. To access whether phosphorylation sites within HD and NK2-SD affect the interaction of the protein with the target sequence, alanine substitutions were introduced. The result shows that S631A mutation within NK2-SD does not contribute significantly to the DNA-binding affinity. However, S571A and T600A mutations within HD showed lower affinity for DNA binding. In addition, DNA-binding analysis using embryonic nuclear protein also demonstrates that Vnd interacts with other nuclear proteins, suggesting the existence of Vnd as a complex.

The Role of Lozenge in Drosophila Hematopoiesis

  • Koranteng, Ferdinand;Cha, Nuri;Shin, Mingyu;Shim, Jiwon
    • Molecules and Cells
    • /
    • v.43 no.2
    • /
    • pp.114-120
    • /
    • 2020
  • Drosophila hematopoiesis is comparable to mammalian differentiation of myeloid lineages, and therefore, has been a useful model organism in illustrating the molecular and genetic basis for hematopoiesis. Multiple novel regulators and signals have been uncovered using the tools of Drosophila genetics. A Runt domain protein, lozenge, is one of the first players recognized and closely studied in the hematopoietic lineage specification. Here, we explore the role of lozenge in determination of prohemocytes into a special class of hemocyte, namely the crystal cell, and discuss molecules and signals controlling the lozenge function and its implication in immunity and stress response. Given the highly conserved nature of Runt domain in both invertebrates and vertebrates, studies in Drosophila will enlighten our perspectives on Runx-mediated development and pathologies.

Structural insights showing how arginine is able to be glycosylated by pathogenic effector proteins

  • Park, Jun Bae;Yoo, Youngki;Cho, Hyun-Soo
    • BMB Reports
    • /
    • v.51 no.12
    • /
    • pp.609-610
    • /
    • 2018
  • Glycosylation is one form of protein modification and plays a key role in protein stability, function, signaling regulation and even cancer. NleB and SseK are bacterial effector proteins and possess glycosyltransferase activity, even though they have different substrate preferences. NleB/SseKs transfer the GlcNAc sugar to an arginine residue of host proteins, leading to reduced $NF-{\kappa}B-dependent$ responses. By combining X-ray crystallography, NMR, molecular dynamics, enzyme kinetic assays and in vivo experiments, we demonstrated that a conserved HEN (His-Glu-Asn) motif in the active site plays a key role in enzyme catalysis and virulence. The lid-domain regulates the opening and closing of the active site and the HLH domain determines the substrate specificity. Our findings provide evidence for the enzymatic mechanism by which arginine can be glycosylated by SseK/NleB enzymes.

Molecular Cloning and Expression of Human Dihydrolipoamide Dehydrogenase-Binding Protein in Excherichia coli

  • Lee, Jeong-Min;Ryou, Chong-Suk;Kwon, Moo-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.4
    • /
    • pp.592-597
    • /
    • 2001
  • The pyruvate dehydrogenase complex (PDC) catalyzes the oxidative decarboxylation of pyruvate with the formation of $CO_2$, acetyl-CoA, NADH, and H+. This complex contains multiple copies of three catalytic components including pyruvate dehydrogenase(E1), dihydrolipoamide acetyltransferase(E2), and dihydrolipoamide dehydrogenase (E3). Two regulatory components (E1-kinase and phospho-E1 phosphatase) and functionally less-understood protein (protein X, E3BP) are also involved in the formation of the complex. In this study, cloning and characterization of a gene for human E3BP have been carried out. A cDNA encoding the human E3BP was isolated by database search and cDNA library screening. The primary structure of E3BP has some similar characteristics with that of E2 in the lipoyl domain and the carboxyl-terminal domain, based on the nucleotide sequence and the deduced amino acid sequence. However, the conserved amino acid moiety including the histidine residue for acetyltransferase activity in E2 is not conserved in the case of human E3BP. The human E3BP was expressed and purified in E. coli. The molecular weight of the protein, excluding the mitochondrial target sequence, was about 50 kDa as determined by SDS-PAGE. Cloning of human E3BP and expression of the recombinant E3BP will facilitate the understanding of the role(s) of E3BP in mammalian PDC.

  • PDF