DOI QR코드

DOI QR Code

The Role of Lozenge in Drosophila Hematopoiesis

  • Received : 2019.10.30
  • Accepted : 2019.12.04
  • Published : 2020.02.29

Abstract

Drosophila hematopoiesis is comparable to mammalian differentiation of myeloid lineages, and therefore, has been a useful model organism in illustrating the molecular and genetic basis for hematopoiesis. Multiple novel regulators and signals have been uncovered using the tools of Drosophila genetics. A Runt domain protein, lozenge, is one of the first players recognized and closely studied in the hematopoietic lineage specification. Here, we explore the role of lozenge in determination of prohemocytes into a special class of hemocyte, namely the crystal cell, and discuss molecules and signals controlling the lozenge function and its implication in immunity and stress response. Given the highly conserved nature of Runt domain in both invertebrates and vertebrates, studies in Drosophila will enlighten our perspectives on Runx-mediated development and pathologies.

Keywords

References

  1. Agaisse, H., Petersen, U.M., Boutros, M., Mathey-Prevot, B., and Perrimon, N. (2003). Signaling role of hemocytes in Drosophila JAK/STAT-dependent response to septic injury. Dev. Cell 5, 441-450. https://doi.org/10.1016/S1534-5807(03)00244-2
  2. Anderson, R.C. (1945). A study of the factors affecting fertility of lozenge females of Drosophila melanogaster. Genetics 30, 280-296. https://doi.org/10.1093/genetics/30.3.280
  3. Ashburner, M. and Novitski, E. (1976). Genetics and Biology of Drosophila (London: Academic Press).
  4. Bangs, P., Franc, N., and White, K. (2000). Molecular mechanisms of cell death and phagocytosis in Drosophila. Cell Death Differ. 7, 1027-1034. https://doi.org/10.1038/sj.cdd.4400754
  5. Bataille, L., Auge, B., Ferjoux, G., Haenlin, M., and Waltzer, L. (2005). Resolving embryonic blood cell fate choice in Drosophila: interplay of GCM and RUNX factors. Development (Cambridge, England) 132, 4635-4644. https://doi.org/10.1242/dev.02034
  6. Bernardoni, R., Vivancos, V., and Giangrande, A. (1997). glide/gcm is expressed and required in the scavenger cell lineage. Dev. Biol. 191, 118-130. https://doi.org/10.1006/dbio.1997.8702
  7. Berson, A., Goodman, L.D., Sartoris, A.N., Otte, C.G., Aykit, J.A., Lee, V.M., Trojanowski, J.Q., and Bonini, N.M. (2019). Drosophila Ref1/ALYREF regulates transcription and toxicity associated with ALS/FTD disease etiologies. Acta Neuropathol. Commun. 7, 65. https://doi.org/10.1186/s40478-019-0710-x
  8. Bidla, G., Dushay, M.S., and Theopold, U. (2007). Crystal cell rupture after injury in Drosophila requires the JNK pathway, small GTPases and the TNF homolog Eiger. J. Cell Sci. 120, 1209-1215. https://doi.org/10.1242/jcs.03420
  9. Binggeli, O., Neyen, C., Poidevin, M., and Lemaitre, B. (2014). Prophenoloxidase activation is required for survival to microbial infections in Drosophila. PLoS Pathog. 10, e1004067. https://doi.org/10.1371/journal.ppat.1004067
  10. Blanco-Obregon, D.M., Katz, M.J., Durrieu, L., Gandara, L., and Wappner, P. (2019). Context-specific functions of notch in Drosophila blood cell progenitors. bioRxiv 82658.
  11. Bras, S., Martin-Lanneree, S., Gobert, V., Auge, B., Breig, O., Sanial, M., Yamaguchi, M., Haenlin, M., Plessis, A., and Waltzer, L. (2012). Myeloid leukemia factor is a conserved regulator of RUNX transcription factor activity involved in hematopoiesis. Proc. Natl. Acad. Sci. U. S. A. 109, 4986-4991. https://doi.org/10.1073/pnas.1117317109
  12. Brehelin, M. (1982). Comparative study of structure and function of blood cells from two Drosophila species. Cell Tissue Res. 221, 607-615. https://doi.org/10.1007/BF00215704
  13. Canon, J. and Banerjee, U. (2000). Runt and Lozenge function in Drosophila development. Semin. Cell Dev. Biol. 11, 327-336. https://doi.org/10.1006/scdb.2000.0185
  14. Carton, Y., Poirie, M., and Nappi, A.J. (2008). Insect immune resistance to parasitoids. Insect Sci. 15, 67-87. https://doi.org/10.1111/j.1744-7917.2008.00188.x
  15. Cerenius, L., Lee, B.L., and Soderhall, K. (2008). The proPO-system: pros and cons for its role in invertebrate immunity. Trends Immun. 29, 263-271. https://doi.org/10.1016/j.it.2008.02.009
  16. Cho, B., Spratford, C.M., Yoon, S., Cha, N., Banerjee, U., and Shim, J. (2018). Systemic control of immune cell development by integrated carbon dioxide and hypoxia chemosensation in Drosophila. Nat. Commun. 9, 2679. https://doi.org/10.1038/s41467-018-04990-3
  17. Crew, J.R., Batterham, P., and Pollock, J.A. (1997). Developing compound eye in lozenge mutants of Drosophila: lozenge expression in the R7 equivalence group. Dev. Genes Evol. 206, 481-493. https://doi.org/10.1007/s004270050079
  18. Crozatier, M., Ubeda, J.M., Vincent, A., and Meister, M. (2004). Cellular immune response to parasitization in Drosophila requires the EBF orthologue collier. PLoS Biol. 2, E196. https://doi.org/10.1371/journal.pbio.0020196
  19. Crute, B.E., Lewis, A.F., Wu, Z., Bushweller, J.H., and Speck, N.A. (1996). Biochemical and biophysical properties of the core-binding factor alpha2 (AML1) DNA-binding domain. J. Biol. Chem. 271, 26251-26260. https://doi.org/10.1074/jbc.271.42.26251
  20. Daga, A., Karlovich, C.A., Dumstrei, K., and Banerjee, U. (1996). Patterning of cells in the Drosophila eye by Lozenge, which shares homologous domains with AML1. Genes Dev. 10, 1194-1205. https://doi.org/10.1101/gad.10.10.1194
  21. De Gregorio, E., Han, S.J., Lee, W.J., Baek, M.J., Osaki, T., Kawabata, S., Lee, B.L., Iwanaga, S., Lemaitre, B., and Brey, P.T. (2002). An immune-responsive Serpin regulates the melanization cascade in Drosophila. Dev. Cell 3, 581-592. https://doi.org/10.1016/S1534-5807(02)00267-8
  22. Dey, N.S., Ramesh, P., Chugh, M., Mandal, S., and Mandal, L. (2016). Dpp dependent hematopoietic stem cells give rise to Hh dependent blood progenitors in larval lymph gland of Drosophila. eLife 5, e18295. https://doi.org/10.7554/eLife.18295
  23. Dormand, E.L. and Brand, A.H. (1998). Runt determines cell fates in the Drosophila embryonic CNS. Development 125, 1659-1667. https://doi.org/10.1242/dev.125.9.1659
  24. Dudzic, J.P., Kondo, S., Ueda, R., Bergman, C.M., and Lemaitre, B. (2015). Drosophila innate immunity: regional and functional specialization of prophenoloxidases. BMC Biol. 13, 81. https://doi.org/10.1186/s12915-015-0193-6
  25. Duffy, J.B. and Gergen, J.P. (1991). The Drosophila segmentation gene runt acts as a position-specific numerator element necessary for the uniform expression of the sex-determining gene Sex-lethal. Genes Dev. 5, 2176-2187. https://doi.org/10.1101/gad.5.12a.2176
  26. Duffy, J.B., Kania, M.A., and Gergen, J.P. (1991). Expression and function of the Drosophila gene runt in early stages of neural development. Development (Cambridge, England) 113, 1223. https://doi.org/10.1242/dev.113.4.1223
  27. Duvic, B., Hoffmann, J.A., Meister, M., and Royet, J. (2002). Notch signaling controls lineage specification during Drosophila larval hematopoiesis. Curr. Biol. 12, 1923-1927. https://doi.org/10.1016/S0960-9822(02)01297-6
  28. Elrod-Erickson, M., Mishra, S., and Schneider, D. (2000). Interactions between the cellular and humoral immune responses in Drosophila. Curr. Biol. 10, 781-784. https://doi.org/10.1016/S0960-9822(00)00569-8
  29. Evans, C.J., Hartenstein, V., and Banerjee, U. (2003). Thicker than blood: conserved mechanisms in Drosophila and vertebrate hematopoiesis. Dev. Cell. 5, 673-690. https://doi.org/10.1016/S1534-5807(03)00335-6
  30. Ferguson, G.B. and Martinez-Agosto, J.A. (2014a). Kicking it up a notch for the best in show: scalloped leads Yorkie into the haematopoietic arena. Fly (Austin) 8, 206-217. https://doi.org/10.1080/19336934.2015.1055427
  31. Ferguson, G.B. and Martinez-Agosto, J.A. (2014b). Yorkie and scalloped signaling regulates notch-dependent lineage specification during Drosophila hematopoiesis. Curr. Biol. 24, 2665-2672. https://doi.org/10.1016/j.cub.2014.09.081
  32. Flores, G.V., Daga, A., Kalhor, H.R., and Banerjee, U. (1998). Lozenge is expressed in pluripotent precursor cells and patterns multiple cell types in the Drosophila eye through the control of cell-specific transcription factors. Development 125, 3681-3687. https://doi.org/10.1242/dev.125.18.3681
  33. Fossett, N., Hyman, K., Gajewski, K., Orkin, S.H., and Schulz, R.A. (2003). Combinatorial interactions of Serpent, lozenge, and U-shaped regulate crystal cell lineage commitment during Drosophila hematopoiesis. Proc. Natl. Acad. Sci. U. S. A. 100, 11451-11456. https://doi.org/10.1073/pnas.1635050100
  34. Fossett, N., Tevosian, S.G., Gajewski, K., Zhang, Q., Orkin, S.H., and Schulz, R.A. (2001). The friend of GATA proteins U-shaped, FOG-1, and FOG-2 function as negative regulators of blood, heart, and eye development in Drosophila. Proc. Natl. Acad. Sci. U. S. A. 98, 7342-7347. https://doi.org/10.1073/pnas.131215798
  35. Galko, M.J. and Krasnow, M.A. (2004). Cellular and genetic analysis of wound healing in Drosophila larvae. PLoS Biol. 2, E239. https://doi.org/10.1371/journal.pbio.0020239
  36. Gergen, J.P. and Wieschaus, E. (1986). Dosage requirements for runt in the segmentation of Drosophila embryos. Cell 45, 289-299. https://doi.org/10.1016/0092-8674(86)90393-4
  37. Gold, K.S. and Bruckner, K. (2015). Macrophages and cellular immunity in Drosophila melanogaster. Semin. Immunol. 27, 357-368. https://doi.org/10.1016/j.smim.2016.03.010
  38. Grigorian, M., Mandal, L., and Hartenstein, V. (2011). Hematopoiesis at the onset of metamorphosis: terminal differentiation and dissociation of the Drosophila lymph gland. Dev. Genes Evol. 221, 121-131. https://doi.org/10.1007/s00427-011-0364-6
  39. Holz, A., Bossinger, B., Strasser, T., Janning, W., and Klapper, R. (2003). The two origins of hemocytes in Drosophila. Development 130, 4955-4962. https://doi.org/10.1242/dev.00702
  40. Ingham, P. and Gergen, P. (1988). Interactions between the pair-rule genes runt, hairy, even-skipped and fushi tarazu and the establishment of periodic pattern in the Drosophila embryo. Development (Cambridge, England) 104, 51. https://doi.org/10.1242/dev.104.Supplement.51
  41. Jung, S.H., Evans, C.J., Uemura, C., and Banerjee, U. (2005). The Drosophila lymph gland as a developmental model of hematopoiesis. Development (Cambridge, England) 132, 2521. https://doi.org/10.1242/dev.01837
  42. Keebaugh, E. and Schlenke, T. (2013). Insights from natural host-parasite interactions: the Drosophila model. Dev. Comp. Immunol. 42, 111-123. https://doi.org/10.1016/j.dci.2013.06.001
  43. Krzemien, J., Dubois, L., Makki, R., Meister, M., Vincent, A., and Crozatier, M. (2007). Control of blood cell homeostasis in Drosophila larvae by the posterior signalling centre. Nature 446, 325-328. https://doi.org/10.1038/nature05650
  44. Krzemien, J., Oyallon, J., Crozatier, M., and Vincent, A. (2010). Hematopoietic progenitors and hemocyte lineages in the Drosophila lymph gland. Dev. Biol. 346, 310-319. https://doi.org/10.1016/j.ydbio.2010.08.003
  45. Kulkarni, V., Khadilkar, R.J., Magadi, S.S., and Inamdar, M.S. (2011). Asrij maintains the stem cell niche and controls differentiation during Drosophila lymph gland hematopoiesis. PLoS One 6, e27667. https://doi.org/10.1371/journal.pone.0027667
  46. Laifook, J. (1966). The repair of wounds in the integument of insects. Phys. Ther. 46, 195-226. https://doi.org/10.1093/ptj/46.2.195
  47. Lanot, R., Zachary, D., Holder, F., and Meister, M. (2001). Postembryonic hematopoiesis in Drosophila. Dev. Biol. 230, 243-257. https://doi.org/10.1006/dbio.2000.0123
  48. Lebestky, T., Chang, T., Hartenstein, V., and Banerjee, U. (2000). Specification of Drosophila hematopoietic lineage by conserved transcription factors. Science 288, 146-149. https://doi.org/10.1126/science.288.5463.146
  49. Lebestky, T., Jung, S.H., and Banerjee, U. (2003). A serrate-expressing signaling center controls Drosophila hematopoiesis. Genes Dev. 17, 348-353. https://doi.org/10.1101/gad.1052803
  50. Leitao, A.B. and Sucena, E. (2015). Drosophila sessile hemocyte clusters are true hematopoietic tissues that regulate larval blood cell differentiation. eLife 4, e06166. https://doi.org/10.7554/eLife.06166
  51. Linford, N.J., Bilgir, C., Ro, J., and Pletcher, S.D. (2013). Measurement of lifespan in Drosophila melanogaster. J. Vis. Exp. 71, 50068.
  52. Lo Coco, F., Pisegna, S., and Diverio, D. (1997). The AML1 gene: a transcription factor involved in the pathogenesis of myeloid and lymphoid leukemias. Haematologica 82, 364-370.
  53. Makhijani, K., Alexander, B., Tanaka, T., Rulifson, E., and Brückner, K. (2011). The peripheral nervous system supports blood cell homing and survival in the Drosophila larva. Development (Cambridge, England) 138, 5379. https://doi.org/10.1242/dev.067322
  54. Mandal, L., Banerjee, U., and Hartenstein, V. (2004). Evidence for a fruit fly hemangioblast and similarities between lymph-gland hematopoiesis in fruit fly and mammal aorta-gonadal-mesonephros mesoderm. Nat. Genet. 36, 1019-1023. https://doi.org/10.1038/ng1404
  55. Mandal, L., Martinez-Agosto, J.A., Evans, C.J., Hartenstein, V., and Banerjee, U. (2007). A hedgehog- and antennapedia-dependent niche maintains Drosophila haematopoietic precursors. Nature 446, 320-324. https://doi.org/10.1038/nature05585
  56. Markus, R., Laurinyecz, B., Kurucz, E., Honti, V., Bajusz, I., Sipos, B., Somogyi, K., Kronhamn, J., Hultmark, D., and Ando, I. (2009). Sessile hemocytes as a hematopoietic compartment in Drosophila melanogaster. Proc. Natl. Acad. Sci. U. S. A. 106, 4805-4809. https://doi.org/10.1073/pnas.0801766106
  57. Milchanowski, A.B., Henkenius, A.L., Narayanan, M., Hartenstein, V., and Banerjee, U. (2004). Identification and characterization of genes involved in embryonic crystal cell formation during Drosophila hematopoiesis. Genetics 168, 325-339. https://doi.org/10.1534/genetics.104.028639
  58. Miller, M., Chen, A., Gobert, V., Auge, B., Beau, M., Burlet-Schiltz, O., Haenlin, M., and Waltzer, L. (2017). Control of RUNX-induced repression of Notch signaling by MLF and its partner DnaJ-1 during Drosophila hematopoiesis. PLoS Genet. 13, e1006932. https://doi.org/10.1371/journal.pgen.1006932
  59. Moreira, S., Stramer, B., Evans, I., Wood, W., and Martin, P. (2010). Prioritization of competing damage and developmental signals by migrating macrophages in the Drosophila embryo. Curr. Biol. 20, 464-470. https://doi.org/10.1016/j.cub.2010.01.047
  60. Morin-Poulard, I., Sharma, A., Louradour, I., Vanzo, N., Vincent, A., and Crozatier, M. (2016). Vascular control of the Drosophila haematopoietic microenvironment by Slit/Robo signalling. Nat. Commun. 7, 11634. https://doi.org/10.1038/ncomms11634
  61. Mukherjee, T., Kim, W.S., Mandal, L., and Banerjee, U. (2011). Interaction between Notch and Hif-alpha in development and survival of Drosophila blood cells. Science 332, 1210-1213. https://doi.org/10.1126/science.1199643
  62. Muratoglu, S., Hough, B., Mon, S.T., and Fossett, N. (2007). The GATA factor Serpent cross-regulates lozenge and u-shaped expression during Drosophila blood cell development. Dev. Biol. 311, 636-649. https://doi.org/10.1016/j.ydbio.2007.08.015
  63. Nam, H.J., Jang, I.H., Asano, T., and Lee, W.J. (2008). Involvement of prophenoloxidase 3 in lamellocyte-mediated spontaneous melanization in Drosophila. Mol. Cells 26, 606-610.
  64. Okuda, T., van Deursen, J., Hiebert, S.W., Grosveld, G., and Downing, J.R. (1996). AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84, 321-330. https://doi.org/10.1016/S0092-8674(00)80986-1
  65. Oliver, C.P. (1946). A study of the relationship between facet irregularities and eye color in lozenge alleles of Drosophila melanogaster. Anat. Rec. 94, 416.
  66. Olofsson, B. and Page, D.T. (2005). Condensation of the central nervous system in embryonic Drosophila is inhibited by blocking hemocyte migration or neural activity. Dev. Biol. 279, 233-243. https://doi.org/10.1016/j.ydbio.2004.12.020
  67. Owusu-Ansah, E. and Banerjee, U. (2009). Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation. Nature 461, 537-541. https://doi.org/10.1038/nature08313
  68. Peeples, E.E., Barnett, D.R., and Oliver, C.P. (1968). Phenol oxidases of a lozenge mutant of Drosophila. Science (New York, NY) 159, 548-552. https://doi.org/10.1126/science.159.3814.548
  69. Peeples, E.E., Geisler, A., Whitcraft, C.J., and Oliver, C.P. (1969a). Activity of phenol oxidases at the puparium formation stage in development of nineteen lozenge mutants of Drosophila melanogaster. Biochem. Genet. 3, 563-569. https://doi.org/10.1007/BF00485477
  70. Peeples, E.E., Geisler, A., Whitcraft, C.J., and Oliver, C.P. (1969b). Comparative studies of phenol oxidase activity during pupal development of three lozenge mutants (lz8,lz,lzk) of Drosophila melanogaster. Genetics 62, 161-170. https://doi.org/10.1093/genetics/62.1.161
  71. Rabbitts, T.H. (1994). Chromosomal translocations in human cancer. Nature 372, 143-149. https://doi.org/10.1038/372143a0
  72. Ramet, M., Lanot, R., Zachary, D., and Manfruelli, P. (2002). JNK signaling pathway is required for efficient wound healing in Drosophila. Dev. Biol. 241, 145-156. https://doi.org/10.1006/dbio.2001.0502
  73. Razzell, W., Evans, I.R., Martin, P., and Wood, W. (2013). Calcium flashes orchestrate the wound inflammatory response through DUOX activation and hydrogen peroxide release. Curr. Biol. 23, 424-429. https://doi.org/10.1016/j.cub.2013.01.058
  74. Rennert, J., Coffman, J.A., Mushegian, A.R., and Robertson, A.J. (2003). The evolution of Runx genes I. A comparative study of sequences from phylogenetically diverse model organisms. BMC Evol. Biol. 3, 4. https://doi.org/10.1186/1471-2148-3-4
  75. Rizki, M.T. (1960). Melanotic tumor formation in Drosophila. J. Morphol. 106, 147-157. https://doi.org/10.1002/jmor.1051060203
  76. Rizki, M.T.M. (1957). Alterations in the haemocyte population of Drosophila melanogaster. J. Morphol. 100, 437-458. https://doi.org/10.1002/jmor.1051000303
  77. Rizki, R.M. and Rizki, T.M. (1974). Basement membrane abnormalities in melanotic tumor formation of Drosophila. Experientia 30, 543-546. https://doi.org/10.1007/BF01926343
  78. Rizki, R.M. and Rizki, T.M. (1980). Hemocyte responses to implanted tissues in Drosophila melanogaster larvae. Wilehm Roux Arch. Dev. Biol. 189, 207-213. https://doi.org/10.1007/BF00868679
  79. Rizki, T.M., Rizki, R.M., and Grell, E.H. (1980). A mutant affecting the crystal cells in Drosophila melanogaster. Wilehm Roux Arch. Dev. Biol. 188, 91-99. https://doi.org/10.1007/BF00848799
  80. Robertson, C.W. (1936). The metamorphosis of Drosophila melanogaster, including an accurately timed account of the principal morphological changes. J. Morphol. 59, 351-399. https://doi.org/10.1002/jmor.1050590207
  81. Rugendorff, A., Younossi-Hartenstein, A., and Hartenstein, V. (1994). Embryonic origin and differentiation of the Drosophila heart. Roux Arch. Dev. Biol. 203, 266-280. https://doi.org/10.1007/BF00360522
  82. Russo, J., Dupas, S., Frey, F., Carton, Y., and Brehelin, M. (1996). Insect immunity: early events in the encapsulation process of parasitoid (Leptopilina boulardi) eggs in resistant and susceptible strains of Drosophila. Parasitology 112, 135-142. https://doi.org/10.1017/S0031182000065173
  83. Sanchez, L. and Nothiger, R. (1983). Sex determination and dosage compensation in Drosophila melanogaster: production of male clones in XX females. EMBO J. 2, 485-491. https://doi.org/10.1002/j.1460-2075.1983.tb01451.x
  84. Shrestha, R. and Gateff, E. (1982). Ultrastructure and cytochemistry of the cell-types in the tumorous hematopoietic organs and the hemolymph of the mutant lethal (1) malignant blood neoplasm (l(1)mbn) of Drosophila melanogaster (Drosophila/mutant blood cells/ultrastructure/cytochemistry). Dev. Growth Differ. 24, 83-98. https://doi.org/10.1111/j.1440-169X.1982.00083.x
  85. Sinenko, S.A., Mandal, L., Martinez-Agosto, J.A., and Banerjee, U. (2009). Dual role of wingless signaling in stem-like hematopoietic precursor maintenance in Drosophila. Dev. Cell 16, 756-763. https://doi.org/10.1016/j.devcel.2009.03.003
  86. Snodgrass, R.E. (1954). Insect Metamorphosis (Washington D.C.: Smithsonian Institution).
  87. Sorrentino, R.P., Carton, Y., and Govind, S. (2002). Cellular immune response to parasite infection in the Drosophila lymph gland is developmentally regulated. Dev. Biol. 243, 65-80. https://doi.org/10.1006/dbio.2001.0542
  88. Speck, N.A. and Terryl, S. (1995). A new transcription factor family associated with human leukemias. Crit. Rev. Eukaryot. Gene Expr. 5, 337-364. https://doi.org/10.1615/CritRevEukarGeneExpr.v5.i3-4.60
  89. Stocker, H. and Gallant, P. (2008). Getting started. In Drosophila: Methods and Protocols, C. Dahmann, ed. (Totowa, USA: Humana Press), pp. 27-44.
  90. Tang, H., Kambris, Z., Lemaitre, B., and Hashimoto, C. (2006). Two proteases defining a melanization cascade in the immune system of Drosophila. J. Biol. Chem. 281, 28097-28104. https://doi.org/10.1074/jbc.M601642200
  91. Tepass, U., Fessler, L.I., Aziz, A., and Hartenstein, V. (1994). Embryonic origin of hemocytes and their relationship to cell death in Drosophila. Development (Cambridge, England) 120, 1829-1837. https://doi.org/10.1242/dev.120.7.1829
  92. Terriente-Felix, A., Li, J., Collins, S., Mulligan, A., Reekie, I., Bernard, F., Krejci, A., and Bray, S. (2013). Notch cooperates with Lozenge/Runx to lock haemocytes into a differentiation programme. Development 140, 926-937. https://doi.org/10.1242/dev.086785
  93. Waltzer, L., Ferjoux, G., Bataille, L., and Haenlin, M. (2003). Cooperation between the GATA and RUNX factors Serpent and Lozenge during Drosophila hematopoiesis. EMBO J 22, 6516-6525. https://doi.org/10.1093/emboj/cdg622
  94. Wang, Q., Stacy, T., Binder, M., Marin-Padilla, M., Sharpe, A.H., and Speck, N.A. (1996). Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc. Natl. Acad. Sci. U. S. A. 93, 3444. https://doi.org/10.1073/pnas.93.8.3444
  95. Wood, W., Faria, C., and Jacinto, A. (2006). Distinct mechanisms regulate hemocyte chemotaxis during development and wound healing in Drosophila melanogaster. J. Cell Biol. 173, 405-416. https://doi.org/10.1083/jcb.200508161

Cited by

  1. Single-cell analysis of mosquito hemocytes identifies signatures of immune cell subtypes and cell differentiation vol.10, 2020, https://doi.org/10.7554/elife.66192
  2. The Roles of the LIM Domain Proteins in Drosophila Cardiac and Hematopoietic Morphogenesis vol.8, 2020, https://doi.org/10.3389/fcvm.2021.616851