• Title/Summary/Keyword: conservation of mass

Search Result 523, Processing Time 0.029 seconds

Sensitivity Analysis of Infiltration using a Mass Conservative Numerical Solution of Richards Equation (Richairds 방정식의 질량보존적 수치해석 해법에 의한 침투량의 민감도분석)

  • Choi, Hyun Il
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.683-688
    • /
    • 2007
  • Water flow into unsaturated soils is most often modeled by Richards equation consisting of the mass conservation law and Darcy's law. Three standard forms of Richards equation are presented as the head (${\Psi}$)-based form, the moisture content (${\theta}$) based form, and the mixed form. Numerical solutions of these partial differential equations with highly nonlinear terms can cause poor results along with significant mass balance errors. The numerical solution based on the mixed form of Richards equation is known that the mass is perfectly conserved without any additional computational efforts. The aim of this study is to develop fully implicit numerical scheme of Richards equation for one-dimensional vertical unsaturated flow in homogeneous soils using the finite difference approximation, and then to perform sensitivity analysis of infiltration to the variations in the unsaturated soil properties and to different soil types.

SIMULATION OF UNIT CELL PERFORMANCE IN THE POLYMER ELECTROLYTE MEMBRANE FUEL CELL

  • Kim, H.G.;Kim, Y.S.;Shu, Z.
    • International Journal of Automotive Technology
    • /
    • v.7 no.7
    • /
    • pp.867-872
    • /
    • 2006
  • Fuel cells are devices that convert chemical energy directly into electrical energy. Owing to the high efficiency of the fuel cells, a large number of research work have been done during these years. Among many kinds of the fuel cells, a polymer electrolyte membrane fuel cell is such kind of thing which works under low temperature. Because of the specialty, it stimulated intense global R&D competition. Most of the major world automakers are racing to develop polymer electrolyte membrane fuel cell passenger vehicles. Unfortunately, there are still many problems to be solved in order to make them into the commercial use, such as the thermal and water management in working process of PEMFCs. To solve the difficulites facing the researcher, the analysis of the inner mechanism of PEMFC should be implemented as much as possible and mathematical modeling is an important tool for the research of the fuel cell especially with the combination of experiment. By regarding some of the assumptions and simplifications, using the finite element technique, a two-dimensional electrochemical mode is presented in this paper for the further comparison with experimental data. Based on the principals of the problem, the equations of electronic charge conservation equation, gas-phase continuity equation, and mass balance equation are used in calculating. Finally, modeling results indicate some of the phenomenon in a unit cell, and the relationships between potential and current density.

LIFE-SPAN SIMULATION AND DESIGN APPROACH FOR REINFORCED CONCRETE STRUCTURES

  • An, Xuehui;Maekawa, Koichi;Ishida, Tetsuya
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.3-17
    • /
    • 2007
  • This paper provides an introduction to life-span simulation and numerical approach to support the performance design processes of reinforced concrete structures. An integrated computational system is proposed for life-span simulation of reinforced concrete. Conservation of moisture, carbon dioxide, oxygen, chloride, calcium and momentum is solved with hydration, carbonation, corrosion, ion dissolution. damage evolution and their thermodynamic/mechanical equilibrium. Coupled analysis of mass transport and damage mechanics associated with steel corrosion is presented for structural performance assessment of reinforced concrete. Multi-scale modeling of micro-pore formation and transport phenomena of moisture and ions are mutually linked for predicting the corrosion of reinforcement and volumetric changes. The interaction of crack propagation with corroded gel migration can also be simulated. Two finite element codes. multi-chemo physical simulation code (DuCOM) and nonlinear dynamic code of structural reinforced concrete (COM3) were combined together to form the integrated simulation system. This computational system was verified by the laboratory scale and large scale experiments of damaged reinforced concrete members under static loads, and has been applied to safety and serviceability assessment of existing structures. Based on the damage details predicted by the nonlinear finite element analytical system, the life-span-cost of RC structures including the original construction costs and the repairing costs for possible damage during the service life can be evaluated for design purpose.

  • PDF

Performance Analysis of a Reciprocating Compressor Using a Real Gas Equation of State (실제기체 상태방정식을 이용한 왕복동압축기의 성능해석)

  • Kim, J.W.;Kim, H.J.;Pak, H.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.4
    • /
    • pp.306-315
    • /
    • 1992
  • This paper addresses performance analysis of a reciprocating compressor. A computer simulation model has been developed to predict and estimate the compressor performance. Instead of using ideal gas equations, real gas equations are used in describing the state of gas. The compressor simulation model consists of a cylinder control volume, suction system and discharge system. Conservation laws of mass and energy are applied to the cylinder section only, The suction and discharge system are described by the Helmholtz resonator modeling. Some of input data required for the simulation have been obtained from experiments. These experimentally obtained input data are effective flow area, effective force area and dynamic characteristics of valves. Simulation results of real gas equations have been compared with those of ideal gas equations. It has been found that the simulation with real gas equations yields lower cylinder temperature and heat transfer compared with those of ideal gas equations. Differences in pressure, mass flowrates, valve motions and gas pulsations are found quite small.

  • PDF

Assessment of Ventilation System for Ro/Ro Ship Using CFD (전산 유체 해석에 의한 자동차 운반선 내부 환기 시스템 평가)

  • Lee, Sung-Su;Kim, Hak-Sun;Chun, Seung-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.1 s.139
    • /
    • pp.10-17
    • /
    • 2005
  • Due to emission of vehicles during loading/unloading, ventilation system in Roll-on/Roll-off ship is inevitable; however it is very difficult to predict the ventilation performance before it is finally built in. Although the requirements for the ventilation system include air change rate and maximum allowable concentration of CO in the cargo holds, even prototype tests are hardly able to quantify the ventilation performance. In the present paper, a new method to assess the ventilation performance of Roll-on/Roll-off ship is proposed by using computational fluid dynamics. The air exchange is modeled by introducing multi-species transport of existing air In the holds and new air from the ventilation system. Conservation of multi-species as well as 3D Navier-Stokes equation are solved numerically in time dependent manner. Several cases of different configuration are considered. The results include predicted mass fraction of new air in the holds. It is also presented that CO concentration can be estimated based on the predicted air change performance. Due to the lack of experimental data, the computed results are not verified; however the proposed method can be applied as au assessment tool.

A Study on the Selection of Dependent Variables of Momentum Equations in the General Curvilinear Coordinate System for Computational Fluid Dynamics (전산유체역학을 위한 일반 곡률좌표계에서 운동량 방정식의 종속변수 선정에 관한 연구)

  • Kim, Won-Kap;Choi, Young Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.2
    • /
    • pp.198-209
    • /
    • 1999
  • This study reports the selection of dependent variables for momentum equations in general curvilinear coordinates. Catesian, covariant and contravariant velocity components were examined for the dependent variable. The focus of present study is confined to staggered grid system Each dependent variable selected for momentum equations are tested for several flow fields. Results show that the selection of Cartesian and covariant velocity components intrinsically can not satisfy mass conservation of control volume unless additional converting processes ore used. Also, Cartesian component can only be used for the flow field in which main-flow direction does not change significantly. Convergence rate for the selection of covariant velocity component decreases quickly as with the increase of non-orthogonality of grid system. But the selection of contravariant velocity component reduces the total mass residual of discretized equations rapidly to the limit of machine accuracy and the solutions are insensitive to the main-flow direction.

Analysis of Filling in Injection Molding with Compressibility (압축성을 고려한 사출성형 충전과정에 관한 연구)

  • Han, Kyeong-Hee;Im, Yong-Taek
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.5
    • /
    • pp.735-745
    • /
    • 1997
  • In this study, the compressibility of resin was considered in filling analysis to account for the possible packing type flow. A numerical simulation program employing a hybrid finite element/finite difference scheme was developed to solve Hele-Shaw flow of the compressible viscous fluid at non-isothermal conditions. To advance the melt front, a control volume approach was adopted. Thin complex 3-D shapes of cavities, runners, and sprues were discretized by employing triangular, cylindrical and/or rectangular strip elements. Mass conservation was applied to each control volume to solve for the pressure distribution. Directly applying a constant mass flow rate at the inlet removes calculation of the apparent pressure boundary conditions, resulting in better simulation condition. The Cross model was used to model viscosity and the Tait equation was employed to represent density as a function of temperature and pressure. The validity of the developed program was verified through comparisons with available data in the literature and the effect of compressibility on the pressure distribution was discussed. To reduce computation time, 1-D and 2-D elements were used instead of applying triangular elements and the numerical results were compared to each other.

Numerical computation of pulsed laser ablation phenomena by thermal mechanisms (열적 메커니즘에 의한 펄스레이저 어블레이션 현상의 수치계산)

  • Oh, Bu-Kuk;Kim, Dong-Sik
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1572-1577
    • /
    • 2003
  • High-power pulsed laser ablation under atmospheric pressure is studied utilizing numerical and experimental methods with emphasis on recondensation ratio, and the dynamics of the laser induced vapor flow. In the numerical calculation, the temperature pressure, density and vaporization flux on a solid substrate are first obtained by a heat-transfer computation code based on the enthalpy method, and then the plume dynamics is calculated by using a commercial CFD package. To confirm the computation results, the probe beam deflection technique was utilized for measuring the propagation of a laser induced shock wave. Discontinuities of properties and velocity over the Knudsen layer were investigated. Related with the analysis of the jump condition, the effect of the recondesation ratio on the plume dynamics was examined by comparing the pressure, density, and mass fraction of ablated aluminum vapor. To consider the effect of mass transfer between the ablation plume and air, unlike the most previous investigations, the equation of species conservation is simultaneously solved with the Euler equations. Therefore the numerical model computes not only the propagation of the shock front but also the distribution of the aluminum vapor. To our knowledge, this is the first work that employed a commercial CFD code in the calculation of pulsed ablation phenomena.

  • PDF

An Analysis of Generation and Growth of Multicomponent Particles in the Modified Chemical Vapor Deposition (수정된 화학증착공정에서 다종 성분 입자 생성 및 성장 해석)

  • Lee, Bang Weon;Park, Kyong Soon;Choi, Mansoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.5
    • /
    • pp.670-677
    • /
    • 1999
  • An analysis of generation and growth of multicomponent particles has been carried out to predict the size and composition distributions of particles generated in the Modified Chemical Vapor Deposition(MCVD) process. In MCVD process. scale-up of sintering and micro-control of refractive index may need the Information about the size and composition distributions of $SiO_2-GeO_2$ particles that are generated and deposited. The present work solved coupled steady equations (axi-symmetric two dimensions) for mass conservation, momentum balance. energy and species(such as $SiCl_4$, $GeCl_4$, $O_2$, $Cl_2$) conservations describing fluid flow. heat and mass transfer in a tube. Sectional method has been applied to obtain multi-modal distributions of multicomponent aerosols which vary in both radial and axial directions. Chemical reactions of $SiCl_4$ and $GeCl_4$ were included and the effects of variable properties have also been considered.

Aerodynamic design and optimization of a multi-stage axial flow turbine using a one-dimensional method

  • Xinyang Yin;Hanqiong Wang;Jinguang Yang;Yan Liu;Yang Zhao;Jinhu Yang
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.3
    • /
    • pp.245-256
    • /
    • 2023
  • In order to improve aerodynamic performance of multi-stage axial flow turbines used in aircraft engines, a one-dimensional aerodynamic design and optimization framework is constructed. In the method, flow path is generated by solving mass continuation and energy conservation with loss computed by the Craig & Cox model; Also real gas properties has been taken into consideration. To obtain an optimal result, a multi-objective genetic algorithm is used to optimize the efficiencies and determine values of various design variables; Final design can be selected from obtained Pareto optimal solution sets. A three-stage axial turbine is used to verify the effectiveness of the developed optimization framework, and designs are checked by three-dimensional CFD simulation. Results show that the aerodynamic performance of the optimized turbine has been significantly improved at design point, with the total-to-total efficiency increased by 1.17% and the total-to-static efficiency increased by 1.48%. As for the off-design performance, the optimized one is improved at all working points except those at small mass flow.