• Title/Summary/Keyword: consensus

Search Result 2,262, Processing Time 0.03 seconds

Implementation of a Wireless Distributed Sensor Network Using Data Fusion Kalman-Consensus Filer (정보 융합 칼만-Consensus 필터를 이용한 분산 센서 네트워크 구현)

  • Song, Jae-Min;Ha, Chan-Sung;Whang, Ji-Hong;Kim, Tae-Hyo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.4
    • /
    • pp.243-248
    • /
    • 2013
  • In wireless sensor networks, consensus algorithms for dynamic systems may flexibly usable for their data fusion of a sensor network. In this paper, a distributed data fusion filter is implemented using an average consensus based on distributed sensor data, which is composed of some sensor nodes and a sink node to track the mean values of n sensors' data. The consensus filter resolve the problem of data fusion by a distribution Kalman filtering scheme. We showed that the consensus filter has an optimal convergence to decrease of noise propagation and fast tracking ability for input signals. In order to verify for the results of consensus filtering, we showed the output signals of sensor nodes and their filtering results, and then showed the result of the combined signal and the consensus filtering using zeegbee communication.

Group Average-consensus and Group Formation-consensus for First-order Multi-agent Systems (일차 다개체 시스템의 그룹 평균 상태일치와 그룹 대형 상태일치)

  • Kim, Jae Man;Park, Jin Bae;Choi, Yoon Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.12
    • /
    • pp.1225-1230
    • /
    • 2014
  • This paper investigates the group average-consensus and group formation-consensus problems for first-order multi-agent systems. The control protocol for group consensus is designed by considering the positive adjacency elements. Since each intra-group Laplacian matrix cannot be satisfied with the in-degree balance because of the positive adjacency elements between groups, we decompose the Laplacian matrix into an intra-group Laplacian matrix and an inter-group Laplacian matrix. Moreover, average matrices are used in the control protocol to analyze the stability of multi-agent systems with a fixed and undirected communication topology. Using the graph theory and the Lyapunov functional, stability analysis is performed for group average-consensus and group formation-consensus, respectively. Finally, some simulation results are presented to validate the effectiveness of the proposed control protocol for group consensus.

Observer-based Distributed Consensus Algorithm for Multi-agent Systems with Output Saturations

  • Lim, Young-Hun;Lee, Gwang-Seok
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.3
    • /
    • pp.167-173
    • /
    • 2019
  • This study investigates the problem of leader-following consensus for multi-agent systems with output saturations. This study assumes that the agents are described as a neutrally stable system, and the leader agent generates the bounded trajectory within the saturation level. Then, the objective of the leader-following consensus is to track the trajectory of the leader by exchanging information with neighbors. To solve this problem, we propose an observer-based distributed consensus algorithm. Then, we provide a consensus analysis by applying the Lyapunov stability theorem and LaSalle's invariance principle. The result shows that the agents achieve the leader-following consensus in a global sense. Moreover, we can achieve the consensus by choosing any positive control gain. Finally, we perform a numerical simulation to demonstrate the validity of the proposed algorithm.

A study on the performance evaluation items of the private blockchain consensus algorithm considering consensus stability

  • Min, Youn-A
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.4
    • /
    • pp.71-77
    • /
    • 2020
  • Through the consensus algorithm, which is the core technology of the blockchain, the same data is accurately shared between connected nodes. The use of an appropriate consensus algorithm that considers the user and the usage environment ensures efficient maintenance of data integrity and accuracy. In this paper, we proposed a performance evaluation method for efficient selection of a consensus algorithm among authorized nodes considering the characteristics of a private blockchain platform, and applied the modified item to the existing published formula considering the number of authoritative connected nodes. Through this process, it was possible to simplify the consensus process considering the stability between nodes. The stability of the consensus process can be improved by selecting an appropriate consensus algorithm based on the proposed research.

Consensus of High-Order Integrators With a Communication Delay (통신 지연을 갖는 고차 적분기시스템의 일치)

  • Lee, Sungryul
    • Journal of IKEEE
    • /
    • v.19 no.4
    • /
    • pp.520-525
    • /
    • 2015
  • This paper investigates the consensus problem for high-order integrators with an arbitrary large communication delay. In order to solve this problem, new consensus controller with an additional design parameter that can eliminate the effect of a communication delay on the consensus problem is proposed. Also, it is proved that the proposed consensus controller can always solve the consensus problem of high-order integrators even in the presence of an arbitrarily large communication delay. Finally, an illustrative example is given in order to show the effectiveness of our design method.

Discrete-Time Output Feedback Algorithm for State Consensus of Multi-Agent Systems (다 개체 시스템의 상태 일치를 위한 이산 시간 출력 궤환 협조 제어 알고리즘)

  • Kim, Jae-Yong;Lee, Jin-Young;Kim, Jung-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.625-631
    • /
    • 2011
  • This paper presents a discrete-time output feedback consensus algorithm for Multi-Agent Systems (MAS). Under the assumption that an agent is aware of the relative state information about its neighbors, a state feedback consensus algorithm is designed based on Linear Matrix Inequality (LMI) method. In general, however, it is possible to obtain its relative output information rather than the relative state information. To reconcile this problem, an Unknown Input Observer (UIO) is employed in this paper. To this end, first it is shown that the relative state information can be estimated using the UIO and the measured relative output information. Then a certainty-equivalence type output feedback consensus algorithm is proposed by combining the LMI-based state feedback consensus algorithm with the UIO. Finally, simulation results are given to illustrate that the proposed method successfully achieves the state consensus.

PoW-BC: A PoW Consensus Protocol Based on Block Compression

  • Yu, Bin;Li, Xiaofeng;Zhao, He
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.4
    • /
    • pp.1389-1408
    • /
    • 2021
  • Proof-of-Work (PoW) is the first and still most common consensus protocol in blockchain. But it is costly and energy intensive, aiming at addressing these problems, we propose a consensus algorithm named Proof-of-Work-and-Block-Compression (PoW-BC). PoW-BC is an improvement of PoW to compress blocks and adjust consensus parameters. The algorithm is designed to encourage the reduction of block size, which improves transmission efficiency and reduces disk space for storing blocks. The transaction optimization model and block compression model are proposed to compress block data with a smaller compression ratio and less compression/ decompression duration. Block compression ratio is used to adjust mining difficulty and transaction count of PoW-BC consensus protocol according to the consensus parameters adjustment model. Through experiment and analysis, it shows that PoW-BC improves transaction throughput, and reduces block interval and energy consumption.

Trend Analysis of High-Performance Distributed Consensus Algorithms (고성능 분산 합의 알고리즘 동향 분석)

  • Jin, H.S.;Kim, D.O.;Kim, Y.C.;Oh, J.T.;Kim, K.Y.
    • Electronics and Telecommunications Trends
    • /
    • v.37 no.1
    • /
    • pp.63-72
    • /
    • 2022
  • Recently, blockchain has been attracting attention as a high-reliability technology in various fields. However, the Proof-of-Work-based distributed consensus algorithm applied to representative blockchains, such as Bitcoin and Ethereum, has limitations in applications to various industries owing to its excessive resource consumption and performance limitations. To overcome these limitations, various distributed consensus algorithms have appeared, and recently, hybrid distributed consensus algorithms that use two or more consensus algorithms to achieve decentralization and scalability have emerged. This paper introduces the technological trends of the latest high-performance distributed consensus algorithms by analyzing representative hybrid distributed consensus algorithms.

Performance Analysis of Blockchain Consensus Protocols-A Review

  • Amina Yaqoob;Alma Shamas;Jawad Ibrahim
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.6
    • /
    • pp.181-192
    • /
    • 2023
  • Blockchain system brought innovation in the area of accounting, credit monitoring and trade secrets. Consensus algorithm that considered the central component of blockchain, significantly influences performance and security of blockchain system. In this paper we presented four consensus protocols specifically as Proof of Work (PoW), Proof of Stake (PoS), Delegated Proof of Stake (DPoS) and Practical Byzantine Fault-Tolerance (PBFT), we also reviewed different security threats that affect the performance of Consensus Protocols and precisely enlist their counter measures. Further we evaluated the performance of these Consensus Protocols in tabular form based on different parameters. At the end we discussed a comprehensive comparison of Consensus protocols in terms of Throughput, Latency and Scalability. We presume that our results can be beneficial to blockchain system and token economists, practitioners and researchers.

CONSENSUS N-TREES AND REMOVAL INDEPENDENCE

  • Powers, R.C.
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.3
    • /
    • pp.473-490
    • /
    • 2000
  • Removal independence is a translation of Arrow's axiom of independence of irrelevant alternatives for social welfare functions to an axiom about consensus functions involving n-trees. It is shown that a consensus function is removal independent if and only if it is expressible as th union of three types of functions.

  • PDF