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CONSENSUS N-TREES AND
REMOVAL INDEPENDENCE

R. C. POWERS

ABSTRACT. Removal independence is a translation of Arrow’s ax-
iom of independence of irrelevant alternatives for social welfare func-
tions to an axiom about consensus functions involving n-trees. It is
shown that a consensus function is removal independent if and only
if it is expressible as the union of three types of functions.

1. Introduction

In [6], Campbell and Kelly state the following fact about social wel-
fare functions that involve preference relations on a finite set of alterna-
tives. If a social welfare function f satisfies the axiom of independence
of irrelevant alternatives ([1]), then there exists a partition of the set of
alternatives such that f restricted to any class of this partition is either
dictatorial, null, or this class contains exactly two members. Campbell
and Kelly note that this fact follows directly from Theorem 5 in [9], and
so they refer to it as (Part 1 of) Wilson’s Partition Lemma. Thus, a
social welfare function that satisfies the axiom of irrelevant alternatives
can be thought of as a union of at most three “types” of functions: dicta-
tors (direct of inverse); null functions; social welfare functions restricted
to two element subsets. The goal of this paper is to prove a similar result
for consensus functions that involve n-trees: where the axiom of inde-
pendence of irrelevant alternatives is replaced by the axiom of removal
independence. We now develop the necessary definitions and notation.
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Let S be a set with n elements. An n-tree on S is a set of subsets T of
Ssatisfying: S€T, ¢ ¢ T, {r} € Torallz € S,and XNY € {4, X,Y}
for all X,Y € T. An element X of an n-tree T such that 1 < |X| < n
is called a nontrivial cluster of T'. Thus, the trivial clusters of T are the
singleton subsets and S. The n-tree with only trivial clusters is denoted
by Ty. A cluster in an n-tree is mazimal if it is nontrivial and if it is
not properly contained in any other nontrivial cluster. If X and Y are
proper nonsingleton subsets of S such that X NY € {¢, X, Y}, then we
let Tx =T, U{X} and Txy = Tx U{Y'}. The set of all n-trees on S is
denoted by T.

A consensus function on T is just a mapping C : T* — T where k is
a positive integer. Elements of 7* are called profiles which are denoted
by P=(Ty,...,Ti), P = (T},...,T}), and so on. In particular, for any
proper nonsingleton subset A of S and V C {1,...,k},

Pyy =(Th,...,Tx)

where T; = T4 whenever ¢ € V and T; = T,, whenever i ¢ V. If V = 0,
then we get

P¢ = (T¢,... ,T¢).

In the sequel we will let K denote the index set {1,...,k}. The image
C(P) is the consensus n-tree for the profile P.

In order for C(P) to be a reasonable consensus of the profile P we
need some restrictions on C. For example, a consensus function is said
to satisfy the Pareto condition if, for any profile P = (Ty,... ,Tx) € T*,
A €T, for all i = 1, ...,k implies that A € C(P). Another reasonable
condition for a consensus function C requires that whenever the profiles
P and P’ “agree” on a subset X C S, then so should C(P) and C(P')
agree on X. There are many ways of defining this agreement as shown
in [5]. In this paper we will focus on the following version of agreement.

If T € T and X C S, then T|x denotes the n-tree whose nontrivial
clusters are the nonempty distinct elements of { AN X : A is a nontrivial
cluster of T and 1 < [AN X| < n}. In addition, T|x — X is the n-tree
T|x without the cluster X. For any profile P = (T3, ... ,T;) and subset
X of S,

Plx = (Thlx,-.. , Tk|x)

and
Plx - X =Tlx - X, ... Tx|x — X).
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A consensus function C' is removal independent if, for every X C S and
profiles P, P';

()  Plx ~X = P|x — X implies C(P)|x — X = C(P)|x — X.

The axiom of removal independence was first proposed by Barthélemy
et al. in [3].

There are two simple examples of removal independent consensus
functions. The first example is a constant function, i.e., there exists
an n-tree T such that C(P) = T for all profiles P. In particular, C is
trivial if C(P) = T, for all profiles P. The second example is a projection,
i.e., there exists j € K such that for all P = (T3,...,Tx), C(P) = Tj.
Notice that the first example does not satisfy Pareto whereas the second
one does. In fact, projections are the only consensus functions that are
removal independent and satisfy Pareto ([4]).

Observe that if |X| < 2, then C(P)|x — X = C(P')|]x — X holds
for any function C and profiles P and P’. Similarly, if X = S, then
P|x—X = P/|x — X implies P = P' and so C(P)|x - X = C(P)|x — X
holds for any function C. These comments illustrate why we may assume
that n > 4. In addition, when we consider removal independence in the
sequel we will implicitly assume that 3 < |X| < n. _

In [3], removal independence restricted to three element subsets is
called removal ternary independence. This axiom touches upon the
ternary relation associated with an n-tree (see [7]).

For each n-tree T there is an associated ternary relation Ry on S
where (a,b,c) € Ry if and only if there exists X € T, such that a,b € X
and ¢ ¢ X. We will write ablc € T instead of (a, b, ¢) € Rr. Thus, we will
think of an n-tree not only as a collection of clusters but also as a ternary
relation on S. Note that ablc € T if and only if T'| 45,y —{@, b, ¢} = T(ap3-
Thus, if C is removal ternary independent and P, P’ are two profiles such
that Pl(zse —{@,b, ¢} = P|apg —{a, b, c}, then abjc € C(P) if and only
if ablc € C'(P’). Many of the arguments in the sequel only use this version
of removal independence along with the following (see Proposition 2 in

[2]):

LEMMA 1.1. If T € T and X is a proper subset of S, then X € T if
and only ifablc € T for alla,be X and c ¢ X.

Finally, the proofs in this paper involve repeated applications of re-
moval independence. Therefore, to simplify the discussion, we will of-
ten write only the conclusion of (r). The following is an example.
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“Since ablc € C(P) it follows from (r) that ablc € C(P').” The reader
should understand that it is either given or can be directly verified that
PI{a,b,c} = {a, ba C} =P I{a,b,c} - {aa b, C}-

2. The main result

In this section we give some techniques for generating removal inde-
pendent consensus functions from other removal independent consensus
functions and, at the end of this section, we state of our main result.

LEMMA 2.1. If C : T* — T is removal independent and X is a
nonempty subset of S, then the function D : T* — T given by

D(P) = [C(P)|x U{X}]
for every profile P is removal independent.

Proof. Suppose P|4— A = P’|4— A. Since C is removal independent,
C(P)la — A = C(P'")|a — A. Without loss of generality there are two
possibilities: C(P)|4 = C(P')|a or C(P)|a = C(P')|a U {A}. In the
first case, C(P)|anx = C(P')|anx and so D(P)|4 — A = [C(P)|anx U
{ANX} —A=[CP)arx U{AN X} — A = D(P')|4— A. In the
second case, C(P)|anx = C(P')|anx U {AN X} and it still follows that
D(P)|a— A= D(P')|4 — A. Hence D is removal independent. O

If we apply Lemma 2.1 to the case where C is a projection then there
exists j € K such that for every profile P,

D(P) = Tj|x U {X}.

If a consensus function D has the form given above, then D is called a
local projection.

We now focus on a second type of removal independent consensus
function. If C : 7% — 7T is a nonconstant removal independent consensus
function such that C is not a local projection and there exists a three
element subset {a, b, c} of S where C(P)|s—{apc} = T for every P, then C
is called a near constant. This terminology is motivated by the following
example.

EXAMPLE 2.2. Let {a,b,c} be a three element subset of S and let
j € K. Define E: T* — T as follows:

E(P) = Taperiay i Tilapey — {a,b,c} = T;
Tiap,c) otherwise.
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It is clear that E is well-defined. We claim that E is removal in-
dependent. Let A C S. If ¢ ¢ A, then AN {a,b} = AN {a,b,c}
and s0 Tiopc){attla — A = Tiape}la — A. In this case, E(P)|4 — A =
E(P")|a — A for all profiles P and P’. Assume that ¢ € A. If either
a ¢ Aorb ¢ A, then AN {a,b} is a trivial cluster or empty and so
T{a,b,c},{a,b}'A -A= T{a,b,c}lA — A Aga'in’ E(P)IA - A= E(Pl)‘A —A
for all profiles P and P'. Assume that a,b € A. So {a,b,c} C A
Now P|y — A = P'|4 — A implies that Tj|4 — A = Tj|4 — A and so
[Tla — All{apey = [Tjla ~ All{aic}- Since AN{a, b, c} = {a,b,c} it follows
that Tj|(ape — {@,b,¢} = T}l(apcy — {a,b,c}. Therefore, E(P) = E(P')
and so E(P)|4 — A = E(P’)|4 — A for all profiles P and P'. Hence E is
removal independent.

Let Cy, C4, ..., C; be consensus functions. Then Cjy, C4, ..., C; are said
to be compatible if, for every profile P,

(1) Co(P)UC(P)U ...UCy(P)

is an n-tree. If C;, Cy, ..., C; are compatible, then we will write CoUC{ U
...UC; for the consensus function whose output is given by equation (1)
for each profile P. In the sequel, we will write Co U Cy U ... UC; with the
implicit assumption that Cy, Ci, ..., C; are compatible.

We now state a structure theorem for removal independent consensus
functions.

THEOREM 2.3. A function C : T* — T is removal independent if
and only if there exists t > 0 such that

@) C=CUCU...UC,

where C; is either a constant function (possibly trivial), a local projec-
tion, or a near constant fori =0, ...,¢.

If C = CyUC,U...UC; where C; is either a constant function, a local
projection, or a near constant for 1 = 0, ..., ¢, then it is easy to verify
that C is removal independent. A proof of the converse is achieved
using two major results. The first is given in the next section under the
assumption that C(Ps) # Ty. In this case, C acts like a constant with
respect to maximal clusters. The second result is given in Section 4 under
the assumption that C(P,) = Ty. In this case C is either trivial or a
projection. Finally, in Section 5, the proof of Theorem 2.3 is completed.
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3. The case where C(P;) # T,

The aim of this section is to prove the following theorem.

THEOREM 3.1. If C : T* — T is removal independent and C(P;) #
Ty, then X is a maximal nontrivial cluster in C(P*) for some profile P*

if and only if X is a maximal nontrivial cluster in C(P) for all profiles
P.

We will prove Theorem 3.1 through a sequence of lemmas many of
which are interesting in their own right. The proofs of these lemmas
involve the ternary relation discussed in the introduction.- In addition,
we will use the following facts (see [7]). If T € T and {w,z,y,2} is a
four element subset of S, then:

(3) zy|z € T implies that either zy|w € T or zw|z € T}

(4) zylz € T and zw|z € T imply wy|z € T.

LeMMA 3.2. If X € C(P,) has three or more elements, then X €
C(P) for any profile P.

Proof. We may as well assume that X # S. Let P be an arbitrary
profile. We will show X € C(P) by using Lemma 1.1. Thus, we need to
show that abjc € C(P) for any a,b € X and ¢ ¢ X. Toward this end,
let a,b € X and c ¢ X. Since |X| > 3, there exists d € X — {a, b}.

Let P' = Pl and let P" = P'|(,.q). Note that P" = Py, .y for
some V C K. A major goal in this proof is to show that ad|c € C(P").
We consider two cases.

Case 1. bdla ¢ C(Py).

It follows from (r) that C(P")|(cpay—{¢, b, d} = C(Py)licpay—{c, b, d} =
Ty and C(P")|(apay — {a,b,d} = C(Py)liapay — {a,b,d}. It follows
that bd|c € C(P") and bd|a ¢ C(P"). It follows from equation (3) that
ad|c € C(P").

Case 2. bd|a € C(Py).

It follows from (r) that C(Ppgv)liaca — {a,¢,d} = C(Py)l(acay —
{(l, ¢, d} = T{a,d} and C(P{b,c};V)l{a,b,d} - {av b, d} = C(P¢)|{a,b,d} - {a7 b’ d}
= Tpay- Thus adlc € C(Ppev) and adld ¢ C(Ppey). It follows
from equation (3) that bd|c € C(Ppev). Since bdlc € C(Ppeyv) it
follows from (r) that bd|c € C(Pigpeyv)- Since able € C(Py) it follows
from (r) that ablc € C(Papepv). It follows from equation (4) that



Removal independence 479

adlc € C(Ppev). Since adlc € C(Pppeyyv) it follows from (r) that
ad|c € C(P").

Since ad|c € C(P”) it follows from (r) that adlc € C(P’). A similar
argument will show that bd|c € C(P'). It follows from equation (4) that
abjc € C(P’) and so, by (r), ablc € C(P). O

Example 2.2 shows that Lemma 3.2 need not be true if | X| = 2. The
next two results act as partial converses to Lemma 3.2. From now on
we will apply equations (3) and (4) without explicitly stating it.

LEMMA 3.3. Let {z,y} be a two element subset of S and let V C K.
If X € C(Pyy,v) has three or more elements, then X € C(FP).

Proof. As in the proof of Lemma 3.2, let a,b,d € X and let ¢ ¢ X.
We want to show that ablc € C(Py).

If |{z,y} N {a,b,c}| < 1 then Pyyvifase — {3, 0,¢} = Pyliape —
{a,b,c} and it follows that ab|c € C(Py).

If {z,y} N {a,b,c}| = 2 then either {z,y} = {qa,b}, {z,y} = {a,c},
or {z,y} = {b,c}. We consider each of these cases separately. For the
remainder of this proof, we let P = (P y)v)-

Case 1. {z,y} = {a,b}.

Since ad|c and bd|c belong to C(P) it follows from (r) that ad|c and
bd|c belong to C(P,). Thus ablc € C(P,).

Case 2. {z,y} = {a,c}.

We consider two subcases.

Subcase 2a. bd|a ¢ C(P).

Since bd|c € C(P) and bdla ¢ C(P) it follows from (r) that bd|c €
C(P;) and bd|a-¢ C(P,). Thus ablc € C(Fy).

Subcase 2b. bd|a € C(P).

Since ad|c € C(P) and bd|c € C(P) it follows from (r) that ad|c €
C(Plapeyv) and bd|c € C(Ppyv). 1t follows from (r) that
C(P{a,b,c};V)|{a,b,d} — {a, b, d} = C(P{a,b};V)l{a,b,d} — {a,b, d}. If ab[c <
C(Piapeyv) then, by (r), ablc € C(Fy). If ablc ¢ C(Pppcyv), then,
since ad|c € C(Ppev), adlb € C(Piapeyv). Thus adlp € C(Piapyv)
and, since bd|c € C(Pppyv), adlc € C(Pliapyv). Since ad|c and bd|c
belong to C(P,pv) it follows from (r) that ad|c and bd|c belong C(Fy).
Thus ablc € C(P;). This completes the proof of Case 2.

Case 3. {z,y} = {b,c}.

This proof is symmetric to the proof given for Case 2. O
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LEMMA 3.4. Let P be a profile with X € C(P) a maximal cluster. If
C(Ps) # T, and X has three or more elements, then X € C(P,).

Proof. As in the proof of Lemma 3.3, let a,b,d € X and let ¢ ¢ X.
We want to show that ablc € C(Fy).

Let P' = Pl — {a,b,c}. Since abjc € C(P), it follows that ab|c €
C(P’). We now consider two cases.

Case 1. ab|d ¢ C(P).

First, since ablc € C(P’) and ab|d ¢ C(P’), it follows that
{ad|c,bd|c} C C(P'). Next, let P” = P'|(4cqy and P” = P'|(y .53 Then
P" = Py v and P” = Ppq.w for some subsets V and W of K. Since
{ad|c,bd|c} C C(P') it follows from (r) that ad|c € C(P") and bd|c €
C(P"). It follows from (r) that C(P")|(apa} — {a,d,d} = C(P")|(apa} —
{a,b,d}. Therefore, either ad|b ¢ C(P") or bdla ¢ C(P"). Assume
without loss of generality that ad|b ¢ C'(P”). Then, since ad|c € C(P"),
there exists Y € C(P") such that a,b,d €Y and c ¢ Y. Since [Y| > 3
and P" = P,y it follows from Lemma 3.3 that Y € C(F;). Hence
ab|c (S C(P¢)

Case 2. abld € C(P").

Let P* = P'|(apg)- Then P* = Py 4. for some L C K. If there
exists A € C(P*) such that a,b € A and 3 < |A| < n then, by Lemmas
3.2 and 3.3, A € C(P;) and A € C(P). Since X € C(P) is a maximal
nontrivial cluster with respect to set inclusion and AN X # 0, it follows
that A C X. Thus ¢ ¢ A and so ab|c € C(Fy).

Since ab|d € C(P’) it follows from (r) that abld € C(P*). Given the
previous paragraph, we may as well assume that {a,b} is a maximal
cluster in C(P*).

Recall the hypothesis: C(Ps) # Ty. Let Z € C(P,) be a nontrivial
cluster. We consider various possibilities for Z.

Subcase 2a. {a,b} C Z.

If c € Z, then Z € C(P,) contains at least three elements and so,
by Lemma 3.2, Z € C(P). But XNZ # 0 and Z not a subset of
X contradicts the maximality of X in C(P). So ¢ ¢ Z and hence
ablc € C(Py).

Subcase 2b. |Z N {a,b}| = 1.

Assume without loss of generality that Z N {a,b} = {a}. If |Z] > 3,
then Z € C(P*) by Lemma 3.2. But {a,b} and Z can not both belong to
C(P*). Thus Z = {a,u} for some u € S — {a,b}. Let w € S — {a,b,u}.
Since au|w € C(P,) it follows from (r) that aujw € C(P*). But au|lw €
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C(P*) contradicts the fact that {a,b} is a maximal cluster in C(P*). In
sum, it is impossible to have |Z N {a,b}| = 1.

Subcase 2c. Z N {a,b} = 0.

Let u,v € Z and let PV = Pipuyr. For any w € § — {a,b,u},
since ablw € C(P*), it follows from (r) that ablw € C(PY). Assume
that abjlu ¢ C(PV). Then, by Lemma 1.1, {a,b,u} € C(PY). Since
v € §—{a,b,u} it follows that aujv € C(P") (using {a, b, u}). It follows
from (r) that aulv € C(PuyL). Since uv|b € C(Fy) it follows from
(r) that wv|b € C(PuyL). Since {aulv,uv|b} C C(Pguyr) it follows
that there exists a cluster A € C(P(u);) such that a,u,v € A and
b¢ A. Since |A] > 3 it follows from Lemma 3.3 that A € C(Ps) and
|AN{a,b}| = 1. We showed that this is impossible in Subcase 2b. Thus
ablu € C(PV) and so, by (r), ablu € C(P). It follows from Subcase 2a
that ab|c € C(P;) and this completes the proof. O

It follows from Lemmas 3.2 and 3.4 that if X is a maximal nontrivial
cluster in C(P*) for some profile P* and |X| > 3, then X is a maximal
nontrivial cluster in C(P) for every profile P. Our last result of this
section considers the case where | X| = 2.

LEMMA 3.5. Let {a,b} be a two element subset of S. If C(Py) # Ty
and {a, b} is a maximal cluster in C(P*) for some profile P*, then {a, b}
is a maximal cluster in C(P) for every P.

Proof. First, note that it is impossible to find a profile P such that
{a,b} is a proper subset of a nontrivial cluster in C(P). Otherwise,
there exists a maximal cluster X in C(P) for some P such that |X| >3
and {a,b} C X. It follows from Lemmas 3.2 and 3.4 that X € C(P*)
contrary to the maximality of {a, b} in C(P*). Therefore, for any profile
P, {a,b} is a maximal cluster in C(P) if and only if there exists z €
S — {a, b} such that ab|z € C(P).

Let ¢,d € S — {a,b} and set P’ = P*|(4p¢ and P" = P'|(apay. By
(r), ablc € C(P*) implies ablc € C(P’). By the first paragraph, {a,b} €
C(P"). Since abld € C(P') it follows from (r) that abld € C(P"). So
{a,b} € C(P"). Now P" = Py for some V C K. By (x), abld €
C(P") implies abld € C(Pppev). So {a,b} € C(Pgpqw). By (1),
ablc € C(Ppepv) implies ablc € C(Ppew) for any W € K. So
{a,b} € C(Pupeyw) for any W C K. By (r), abld € C(Ppepw)
implies abld € C(Pp.w) for any W C K. So {a,b} € C(Ppw) for
any W C K.
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Let P be an arbitrary profile. Let PV = P|(g3¢} and PV = PY|¢, 44}
Note that PYY = Pp,uw for some W C K. So {a,b} € C(PYV). By
(r), abld € C(P"V) implies abld € C(P"). So {a,b} € C(PV). By (1),
ablc € C(PV) implies ablc € C(P). Hence {a, b} is a maximal cluster in
C(P). O

Theorem 3.1 now follows from Lemmas 3.2 through 3.5.

4. The case where C(FP;) =T,

The aim of this section is to prove the following theorem.

THEOREM 4.1. If C : T* — T is removal independent and C(P;) =
Ty, then C is either a projection or trivial.

The proof of Theorem 4.1 is established using a sequence of lemmas
and it follows, in many ways, the classical proof of Arrow’s Impossi-
bility Theorem for preference relations. The first lemma, for example,
establishes the notion of a decisive set.

LEMMA 4.2. IfC(Py) = Ty, then C(Pepyv) C Tapy forall {a,b} C S
andV C K.

Proof. Notice that in the proof of Lemma 3.3 we did not use the
fact that C(Py) # T,. So the statement of Lemma 3.3 holds under the
assumption that C(P,) = Ty. Therefore, since C(P,) = Ty, the only
possible nontrivial cluster in C(P(.p);v) contains exactly two elements.
Assume {z,y} € C(Pnyv) and {z,y} # {a,b}. If {z,y} N {a,b} =0,
then zyla € C(Ppapy,v) and so, by (r), zyla € C(Ps). This contradicts
C(Py) =Ty If {z,y} N {a,b}| =1, then we can assume without loss of
generality that {z,y} = {a, y} wherey € S—{a,b}. Let 2 € S—{a, b, y}.
Since ay|z € C(Ppyv) it follows from (r) that ay|z € C(P;). In either
case we contradict the fact that C(Py) = Ty. O

We will say that a subset V of K is decisive for {a, b} if C(Pgpyv) =
T(op3- It turns out that if V' is decisive for some {a, b}, then V is decisive
for all {z,y}. Thus, we will say that V is decisive.

LEMMA 4.3. If C(Py) = Ty and C(Pyepyv) = Tiepy for some {a,b} C
S and V C K, then C(Pizyyv) = Tigyy for all {z,y} C S.
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Proof. Let ¢c,d € S — {a,b}. Since ab|d € C(Pp)v) it follows from
(r) that abld € C(Ppev). If ablc € C(Pppeiv), then, by (r), able €
C(P;) contrary to C(Ps) = Ty. Thus bcld € C(Pigpq.v) and so, by (r),
beld € C(Pp,v). Therefore, by Lemma 4.2, C(Ppv) = Tipe}- By
repeated use of this argument it follows that C(Pizy).v) = Tisy for all
{z,y} CS. O

Let A and B be two proper nonsingleton subsets of S such that ANB €
{0, A, B}. If V and W are subsets of K, then

Pogvw = (Th,..., Tx)

where T; = T4 g whenever ¢ € VNW; T; = T whenever i € VN(K—-W);
T; = Tp whenever i € WN (K —V); T; = T, whenever i € K — (VUW).
In addition, we can drop the assumption that AN B € {0, A, B} if we
restrict V and W so that VN W = 0. The above notation will be used
in the sequel.

For the remaining lemmas in this section we will assume that C(P,) =
Ty and C(Piapyv) = Tiapy for some {a,b} C S and V C K, i.e., there
exists a decisive set V.

LEMMA 4.4. C(Pygyw) = Tizy) forall {z,y} CSandV C W C K.

Proof. Let c,d € §—{a, b} and consider the profile P’ = Pg ¢} (p,c3,v.w -
Since ab|d € C(Pyapyv) it follows from (r) that abld € C(P'). By Lemma
4.3, acld € C(P ) and so, by (1), ac|d € C(P'). Thus beld € C(P').
By (1), bc|ld € C(Ppeyw). By Lemma 4.2, C(Ppypw) = Tip,ep and so, by
Lemma 4.3, C(Pigyw) = Tigyy forall {z,y} C Sand VC W C K. O

It follows from Lemma 4.4 that the collection of decisive sets is an
order filter with respect to set inclusion. Next, we establish the existence
of a decisive set with exactly one element.

LEMMA 4.5. There exists j € K such that C(Pizy).(j3) = Tizy) for
all {z,y} CS.

Proof. Let M be a minimal set, with respect to set inclusion, such
that C(Pigyym) = Tigy for all {z,y} C S. Assume that [M| > 1. Let
J € M and set M; = {j}, Mo = M — {j}, and M3 = K — M. Let
P= P{a,b},{a,b,c};Ml,Mz andletde S — {a, b, c}.

Since abld € C(Pypyn) it follows from (r) that abld € C(P). Either
ablc € C(P) or beld € C(P). If ablc € C(P) then, by (r), ablc €
C(Ppapym). If beld € C(P) then, by (x), beld € C(Ppen,)- In either
case we contradict the minimality of M. |
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For the remainder of this section let {7} be a minimal decisive set.

LEMMA 4.6. C(Pyw) = Tigyy for all {z,y} C S if and only if
JEW.

Proof. Assume that there exists W C K such that C (Pasyw) = Tiap}
for some {a,b} € S and j ¢ W. Let P = Pio4} (e} (jp.w- 1t follows from
(r) and the above that {abld,bc|d} C C(P). Thus ac|d € C(P) and
so, by (1), ac|d € C(P;) contrary to the fact that C(P;) = Ty. Hence
C(Piopyw) = Tiopy implies j € W. The converse follows from Lemma
4.4 and the choice of ;. 0O

LEMMA 4.7. For any profile P = (T, ..., T;), ablc € C(P) whenever
ablc € T;.

Proof. Let P = (T, ..., T) be an arbitrary profile such that ablc € T}.
Let P' = P|(abe — {a,b,c} and P" = P'|(gp4). Note that P" = P, p.w
for some W C K with j € W. Thus abld € C(P”) and so, by (r),
abld € C(P'). If acld € C(P') then, by (r), acld € C(P'|{4c4)) Where
P'l(acay = Plaey,z for some Z C K such that j ¢ Z. This contradicts
Lemma 4.6. Thus ablc € C(P’) and so, by (r), ablc € C(P). O

It follows from Lemmas 1.1 and 4.7 that A € C(P) whenever A € Tj.
Thus, C(P) C T;. In this situation, we call C a dictatorship. The final
step in the proof of Theorem 4.1 is to show that a dictatorship is actually
a projection.

PROOF OF THEOREM 4.1. Assume C(P) # T, for some profile P =
(Ty, ..., Tx). Then ablc € C(P) for some three element subset {a,b,c} of
S. Let P' = P|(gp} —{a, b, c}. It follows from (r) that ablc € C(P'). Let
d € S —{a,b,c}. Either adlc € C(P') or abld € C(P'). If ad|c € C(P')
then, by (r), ad|c € C(P'|(sca})- But P'|(acdy = Placyv for some V C K
and so, ad|c ¢ C(P'|(4c,q;) by Lemma 4.2. So abld € C(P’). It follows
from (r) that abld € C(P'|(apa3). Now P'|(ap4) = Piapp;w for some W C
K. Since ab|d € C(Popyw) it follows from Lemma 4.2 that C(Prappw) =
T(apy- Thus W is a decisive set. As usual, let {j} be a minimal decisive
set. Then, by Lemma 4.6, C(P3).z) = T(opp if and only if j € Z. In
particular, j € W. Since Py ppw = [Pliape; — {@) b, c}Hlfapay it follows
that ablc € T;. Therefore, for any profile P = (T4, ..., T}) and subset
{a,b,c} of S, if ablc € C(P) then ab|c € T;. The converse follows from
Lemma 4.7. Hence, by Lemma 1.1, C is a projection. O
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The next result, which was stated without proof in [5], is a conse-
quence of Theorems 3.1 and 4.1.

THEOREM 4.8. If C : T* — T is removal independent then, for any
profiles P, P’ and subset X of S,

(5) P'X.:P’IX imp]iesC(P)Isz(P')lx.

Proof. If C(Ps) = Ty, then C is either a projection or trivial. In either
case, C satisfies equation (5).

Now suppose C(P;) # T,. Suppose P|x = P'|x where P and P’ are
profiles and X is a proper subset of S containing two or more elements.
If X € C(P)|x then there exists a maximal cluster Z in C(P) such
that X C Z. By Theorem 3.1, Z € C(P’) and so Z € C(P')|x. Thus,
X € C(P)|x if and only if X € C(P')|x. Since P|x — X = P/|x — X
it follows from (r) that C(P)|x — X = C(P')|x — X. Hence C(P)|x =
C(P")|x. m|

As a conclusion to this section, suppose C : 7% — 7 is removal inde-
pendent and satisfies Pareto. Then C is not trivial and, as a consequence
of Theorem 3.1, C(P,) = Ty. It follows from Theorem 4.1 that C is a
. projection (see [4]).

5. Return of the structure theorem

We now return our attention to proving Theorem 2.3.

Let C: T* — T be removal independent and let Z = {X|1 < | X| < n
and X € C(P) for every P}. Let X € T such that |X| > 3. Let 7(X)
denote the set of all m-trees where m = |X|. There is a natural way to
identify an m-tree L in 7(X) with an n-tree (L) in 7. Specifically, let

a(L)y=LUT,

where Tj is, as usual, the n-tree with only trivial clusters. Conversely,
there is a natural way to identify an n-tree T in 7" with an m-tree B(T)
in 7(X). Specifically, let

AT) =T|x U{X}-{S{a}ae S - X}

The mappings a and 3 are illustrated in Figure 1 where S = {1, 2, 3, 4,5}
and X = {1, 2, 3}.
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For any m-tree L in 7(X) and for any T in 7 we have

Figure 1

(6) Ba(L) = BLUT,) =L
and
(7 aB(T) =T|x U {X}.

For any profiles Q = (Ly,...,Lx) € T(X)* and P = (Th, ..., Tr) € T*
we let a(Q) = (a(Ly), ..., (Lx)) and B(P) = (B(T), -, B(Tk)). Thus,
a(Q) € T* and B(P) € T(X)*. Finally, for each profile Q in T(X)*, we
define

Cx(Q) = BlC(A@))]-
Note that Cx is a well-defined function from 7(X)* into 7(X).

LEMMA 5.1. If L, denotes the trivial m-tree in T(X) and Q
(L¢, ...,L¢) € T(X)k, then Cx(Q¢) = L¢ if and OH]y if C(P¢.)|X = Tx.

Proof. (=) By definition, S[C(a(Q)] = Ly. So aB[C(a(Qy))] =
a(Ly). Observe that a(Lg) = Tx. It follows from (7) that afB(C(Px.k)) =
C(Px.x)lx U {X}. Since X € T it follows that C(Px;x)|x U {X} =

Il



Removal independence 487

C(Px.x)|x. It follows from (r) that C(Px;x)lx — X = C(Ps)|x — X.
Again, since X € Z, it follows that C(Px,x)|x = C(Ps)|x. Hence
C(Py)lx =Tx.

(<) As above, C(Px.x)|x = C(Py)|x. Since a(Ly) = Tx and C(Py)|x
= Tx it follows that C(a(Qs))|x = a(Ls). So B[C(a(Qy))|x] = Ba(Ls).
It follows from (6) and the definition of 8 that B[C(a(Qs)] = Lg. Hence
Cx(Q¢) = Ly- 0

LeEMMA 5.2. Cx is removal independent.

Proof. Suppose Q|4—A = Q'|4a—A where Q,Q' € T(X)*and A C X.
Then a(Q)a — A) = a(Q'|a — A). By using the definition of a we get
a(@)la—A = a(Q)|a—A. Since C is removal independent, C(a(Q))|a—
A=C(a(Q))a—A. Then B(C(a(Q))[a — A) = B(C(a(Q'))|a — A). By
using the definition of 3 we get S(C(a(Q)))|a— A = S(C(a(Q)))]a — A.
Hence Cx(Q)lA—A:CX(QI)]A—A. O

Let P = (T, ...,Tx) € T* and let X be a nonempty subset of S. Then
P U {X} denotes the profile (T3 U {X},..., T, U {X}).

LEMMA 5.3. If C(P,)|x = Tx for some X € T and |X| > 4, then
either C(P)|x = Tx for every P or there exists j € K such that
C(P)|x = T;|x U{X} for every P.

Proof. Consider Cx : T(X)*¥ — T(X). By the previous lemmas we
know that Cx is removal independent and Cx(Q,;) = L4. Therefore, by
Theorem 4.1, Cx is either trivial or a projection.

Consider the case where C is trivial. Let P € T*. Then Cx(8(P)) =
Ls. So a(Cx(B(P))) = a(Ly). Thus [@fCaf](P) = Tx. So C(P|x U
{X})|x = Tx. It follows from (r) and the fact that X € T that C(P)|x =
C(P|x U{X})|x. Hence C(P)|x = Tx for every P.

Consider the case where Cx is a projection. So there exists j € K
such that Cx(Q) = L; for every Q = (Li,...,Lx) € T(X)*. Let P =
(Ti,...,T) € T*. Then Cx(B(P)) = B(T}). So a[Cx(B(P))] = aB(T;).
It follows that C(Plx U {X})|x = Tjlx U {X}. It follows from (r)
and the fact that X € T that C(P)|x = C(P|x U {X})|x. Hence
C(P)lx = Tjlx U {X} for every P. O

Let X €T andlet 7 ={Y|l < |Y]| < |X|and Y € Cx(Q) for every
Q}. Let [X) = {Z|Z C X}. Then

(8) J =INn[X).
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To see why equation (8) is true, let Y € J. Then Y € [X). For any
profile P € T* we have Y € Cx(8(P)) = BCaB(P) = BIC(P|x U{X})].
It follows from the definition of 8 and (r) that Y € C(P|x U{X})|x =
C(P)|x. Since X € C(P) it follows that Y € C(P). So Y € Z. Thus
J CIn[X).

Conversely, let Z € TN [X). Then Z € C(P)|x for every P. In
particular, Z € Cx(Q) for every Q. So Z € J and equation (8) is
established.

LEMMA 5.4. If A€ T and B € C(P) for some A C B C S and profile
P, then B & T.

Proof. If B is maximal in C(P) then, by Theorem 3.1, B € Z. Oth-
erwise, there exists X € Z with the properties: B is a proper subset of
X;XeZ;f BCY andY € 7 then X CY. Note that we may assume
that |B| > 3 and | X| > 4.

Consider Cx : T(X)*¥ — T(X). For the profile P in the hypothesis
of this lemma we have B € Cx(G(P)). Let Z be a maximal nontrivial -
cluster in Cx(B(P)) such that B C Z. Since A € Z N [X), it follows
from (8) that A € J. Thus Cx(Lg) # Ly. It follows from Theorem 3.1,
applied to Cx, that Z € J. Therefore, by (8), Z € Z. Since BC Z C X
and Z € T it follows from our choice of X that Z = B. Hence Be Z. 0O

LEMMA 5.5. Let X € T such that |X| > 4. Then X is minimal in T
if and only if Cx(Qy) = L.

Proof. (=) Let 7 ={Y|1 <|Y| < [X]|and Y € Cx(Q) for every Q}.
Since X is minimal in Z it follows from (8) that J = @. It follows from
Theorem 3.1 that Cx(Ly) = Ly.

(<) If X is not minimal in 7 then there exists Y € ZN[X). It follows
from (8) that Y € J. Thus Y € Cx(L,). Hence Cx(Ly) # L. O

We are now ready to complete the proof of Theorem 2.3.

ProoOF OF THEOREM 2.3. Let C : 7% — T be removal independent.
If T = 0, then C(T,) = Ty. By Theorem 4.1, C is either trivial or a
projection. Thus, either C = Cy or C = Cy U C; where Cj is the trivial .
constant function and (] is a projection.

If Z # {, then let X, ..., X; be the minimal elements of Z such that
|X;| > 3 fori=1,..,t. Next, fori=1,..,t, define C; : T* — T by
Ci(P) = C(P)|x, for every P. In addition, define Cy : T — T by
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Co(P) =Ty UT for every P. It is straightforward to verify that
Co(P)UCI(P)U...UC{P) C C(P)

for every P.

To get the reverse inclusion, let P’ be a profile and let Y € C(P').
IfY € Z, then Y € Cy(P'). Otherwise, there exists X € T with the
properties: Y is a proper subset of X; if Y C Z and Z € Z, then
X C Z. We consider two possibilities for X.

If | X| = 3, then, since Y € X and Y ¢ Z, X is minimal in Z. So
X = X, forsomei € {1,...,t}. It follows that Y =Y NX; € C(P))|x, =
Ci(P").

Now consider the case where | X| > 4. Assume X is not minimal in Z.
Then, by Lemma 5.5, Cx(Qy) # Ly Note that Y € Cx(B(P')). Let Z
be a maximal nontrivial cluster in Cx(3(P’)) such that Y C Z. It follows
from Theorem 3.1 that Z € J. Therefore, by (8), Z € Z. It follows from
our choice of X that Y = Z contrary to Y ¢ Z. Therefore, X is minimal
inZ. So X = X; for some ¢ € {1,...,t} and hence Y =Y N X; € C;(P').

At this stage we have

Co(P) U Cy(P) U ... U Cy(P) = C(P)

for every P.

To complete the proof we need to show that each C; is either a con-
stant function, a local projection, or a near constant for ¢ = 0,...,¢.
First, note that Cj is a constant function. Next, it follows from Lemma
2.1 that C; is removal independent for i = 1,...,¢t. In the case where
| X;| = 3, if C; is neither a constant nor a projection, then, by defini-
tion, C; is a near constant. Finally, suppose |X;| > 4. It follows from
Lemmas 5.1 and 5.5 that C(P,)|x, = Tx,. It follows from Lemma 5.3
that either C(P)|x, = T, for every P or there exists j € K such that
C(P)|x; = Tj|x, U {Xi} for every P. Therefore, in this case, C; is either
a constant function or a local projection. This completes the proof of
the structure theorem. O

Finally, there is hope that results like Wilson’s Partition Lemma, The-
orem 2.3 of this paper, and Theorem 5 in [8], will be obtained for other
discrete structures and versions of independence of irrelevant alterna-
tives.
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