• Title/Summary/Keyword: connection design

Search Result 2,565, Processing Time 0.031 seconds

Seismic Design of Low-rise Steel Moment Frames in Korea (국내 저층 철골 모멘트골조의 내진설계)

  • Kim, Tae-Wan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.11-18
    • /
    • 2011
  • The connection type of steel moment frames in the country is mostly fabricated in factories so that it is fairly ductile due to good quality control. Based on references, the domestic connection satisfies the performance limit for steel intermediate moment frames specified by the AISC. However, the current KBC2009 building code specifies various systems for steel moment frames such as ordinary, intermediate, and special moment frames while the former KBC2005 only did so for a ductile moment frame. This induces the necessity of investigating which system is appropriate in the country when the domestic connection is applied. Therefore, this study was aimed at finding a proper design method by comparing the ductile moment frame in KBC2005 and the intermediate moment frames in KBC2009. The results showed that seismic design parameters for the ductile moment frames can be reasonable for satisfying the performance objective.

STRESS ANALYSIS OF SUPPORTING TISSUES AND IMPLANTS ACCORDING TO IMPLANT FIXTURE SHAPES AND IMPLANT-ABUTMENT CONNECTIONS (임플랜트 고정체의 형태와 연결방식에 따른 임플랜트 및 지지조직의 응력분포)

  • Han Sang-Un;Park Ha-Ok;Yang Hong-So
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.2
    • /
    • pp.226-237
    • /
    • 2004
  • Purpose: Four finite element models were constructed in the mandible having a single implant fixture connected to the first premolar-shaped superstructure, in order to evaluate how the shape of the fixture and the implant-abutment connection would influence the stress level of the supporting tissues fixtures, and prosthethic components. Material and methods : The superstructures were constructed using UCLA type abutment, ADA type III gold alloy was used to fabricate a crown and then connected to the fixture with an abutment screw. The models BRA, END , FRI, ITI were constructed from the mandible implanted with Branemark, Endopore, Frialit-2, I.T.I. systems respectively. In each model, 150 N of vertical load was placed on the central pit of an occlusal plane and 150 N of $40^{\circ}$ oblique load was placed on the buccal cusp. The displacement and stress distribution in the supporting tissues and the other components were analysed using a 2-dimensional finite element analysis . The maximum stress in each reference area was compared. Results : 1. Under $40^{\circ}$ oblique loading, the maximum stress was larger in the implant, superstructure and supporting tissue, compared to the stress pattern under vertical loading. 2. In the implant, prosthesis and supporting tissue, the maximum stress was smaller with the internal connection type (FRI) and the morse taper type (ITI) when compared to that of the external connection type (BRA & END). 3. In the superstructure and implant/abutment interface, the maximum stress was smaller with the internal connection type (FRI) and the morse taper type (ITI) when compared to that of the external connection type (BRA & END). 4. In the implant fixture, the maximum stress was smaller with the internal connection type (FRI) and the morse taper type (ITI) when compared to that of the external connection type (BRA & END). 5 The stress was more evenly distributed in the bone/implant interface through the FRI of trapezoidal step design. Especially Under $40^{\circ}$ oblique loading, The maximum stress was smallest in the bone/implant interface. 6. In the implant and superstructure and supporting tissue, the maximum stress occured at the crown loading point through the ITI. Conclusion: The stress distribution of the supporting tissue was affected by shape of a fixture and implant-abutment connection. The magnitude of maximum stress was reduced with the internal connection type (FRI) and the morse taper type (ITI) in the implant, prosthesis and supporting tissue. Trapezoidal step design of FRI showed evenly distributed the stress at the bone/implant interface.

Structural Response Analysis for Multi-Linked Floating Offshore Structure Based on Fluid-Structure Coupled Analysis

  • Kichan Sim;Kangsu Lee;Byoung Wan Kim
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.273-281
    • /
    • 2023
  • Recently, offshore structures for eco-friendly energy, such as wind and solar power, have been developed to address the problem of insufficient land space; in the case of energy generation, they are designed on a considerable scale. Therefore, the scalability of offshore structures is crucial. The Korea Research Institute of Ships & Ocean Engineering (KRISO) developed multi-linked floating offshore structures composed of floating bodies and connection beams for floating photovoltaic systems. Large-scale floating photovoltaic systems are mainly designed in a manner that expands through the connection between modules and demonstrates a difference in structural response with connection conditions. A fluid-structure coupled analysis was performed for the multi-linked floating offshore structures. First, the wave load acting on the multi-linked offshore floating structures was calculated through wave load analysis for various wave load conditions. The response amplitude operators (RAOs) for the motions and structural response of the unit structure were calculated by performing finite element analysis. The effects of connection conditions were analyzed through comparative studies of RAOs and the response's maximum magnitude and occurrence location. Hence, comparing the cases of a hinge connection affecting heave and pitch motions and a fixed connection, the maximum bending stress of the structure decreased by approximately 2.5 times, while the mooring tension increased by approximately 20%, confirmed to be the largest change in bending stress and mooring tension compared to fixed connection. Therefore, the change in structural response according to connection condition makes it possible to design a higher structural safety of the structural member through the hinge connection in the construction of a large-scale multi-linked floating offshore structure for large-scale photovoltaic systems in which some unit structures are connected. However, considering the tension of the mooring line increases, a safety evaluation of the mooring line must be performed.

Design of Shear connection in Full-Depth Precast Concrete Deck Bridge (프리캐스트 콘크리트 바닥판 교량의 전단연결부 설계)

  • Chang, Sung Pil;Shim, Chang Su;Kim, Jong Hee;Kim, Young Jin
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.759-767
    • /
    • 1998
  • Full-depth precast concrete deck bridge has shear pockets for shear connectors that give composite action with steel girder. Strength and shear stiffness of shear connection that is needed to design shear connectors in case that shear pockets are filled with nonshrink mortar are investigated. In case that simple span full-depth precast concrete deck bridge is designed by allowable stress design, distribution of shear connector is suggested and details of precast panel that is placed on the support are proposed. Appropriate distribution of shear connectors in strength design and fatigue design is investigated through parameter analyses using partial interaction theory. The effects of nonshrink mortar strength is studied using the results of experiments and analyses and adequate strength is proposed.

  • PDF

An Experimental Study on Structural Characteristics of Beam-to-Column Connections with Plastic Deformation in the End-Plate (엔드플레이트 항복형 보-기둥 접합부의 구조특성에 관한 실험적 연구)

  • Lee, Seong-Hui;Lee, Se Jung;Yang, Il Seung;Kim, Jin Ho;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.6
    • /
    • pp.585-596
    • /
    • 2009
  • In the construction of end-plate connections, the end-plate is welded to the end of the beam in a factory and fastened by bolts in the field. This connection is widely used in advanced countries such as European countries and the U.S. Its design and connection details are prescribed in Eurocode 3, AISC LRFD, and FEMA 350. In Korea, the standards for seismic design in KBC 2005 have been reinforced based on IBC 2000 in the U.S., and it is expected that the connection details in the U.S. will be adopted for the establishment of beam-to-column design standards. In the U.S. thick end-plates are used for the connections to prevent beam rupture. The use of the connections in Korea, however, may lead toover-design. In this experimental study, the design standards for the end-plate connections provided by FEMA-350 were analyzed and structural tests for six specimens were conducted with the variables being the shim plate and the connection shape, to provide the best specifications for connections with plastic deformation in the end-plate for use in Korea.

Shake Table Test on Seismic Performance Evaluation of the Bolted Connection Type Paneling System with Exterior Finish Material (외부마감재가 부착된 볼트접합 방식 패널링 시스템의 내진성능평가를 위한 진동대 실험)

  • Oh, Sang Hoon;Park, Jong Won;Park, Hae Yong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.23-32
    • /
    • 2018
  • In this study, we conducted a shake table test to verify the seismic performance of the paneling system with steel truss composed of bolt connections. The control group was set to the traditional paneling system with steel truss connected by spot welding method. Test results showed that the bolted connection type paneling system has excellent deformation capacity without cracking or brittle fracture of the steel truss connection parts compared to the welding type paneling system. Furthermore, in the bolted connection type, slight damage occurred at the time of occurrence of the same story drift angle as compared with the existing method, it is considered that it has excellent seismic performance. In compliance with the performance-based design recommended for the current code (ASCE 41-13) on non-structural components, it is judged that in the case of the bolted connection type paneling system, it can be applied to all risk category structures without restriction. However, in the case of traditional paneling system with spot welding method, it is considered that it can be applied limitedly.

Loosening behavior of Internal and External Connection Dental Implants under Cyclic Loads Considering Pre-fastening Force (체결력을 고려한 내부 및 외부연결형 임플란트의 반복 하중에 대한 풀림 연구)

  • Lee, Yongwoo;Jang, Yong Hoon
    • Tribology and Lubricants
    • /
    • v.37 no.4
    • /
    • pp.136-143
    • /
    • 2021
  • This paper presents the loosening behavior that occurs after the application of an external load to internal and external connection types of dental implants using the finite element method. We use fastening force between an abutment and a fixture to clamp the dental implant system; however, loosening and breakage may occur owing to cyclic external loads. In this study, we considered the initial fastening condition in the pre-load analysis and then investigated the change in stress and contact surface status when applying external loads. After the application of the initial fastening load, we verified that the internal connection-type model exhibited a relatively lower stress distribution than that of the external connection-type one. Moreover, we found that the former model showed a lower stress concentration after the application of the external load. In addition, after the application of this load, we found that the higher the shear load acting on the implant system, the higher the possibility of loosening. The study results showed the change in stress distribution and contact surface according to the connection type of the dental implants and the phenomenon of loosening by cyclic loads. We expect that the results of this study will be useful for the study of reliability and design of dental implant systems.

Corrective Control of Composite Asynchronous Sequential Machines in Parallel Connection (병렬 결합된 비동기 순차 머신을 위한 교정 제어)

  • Yang, Jung-Min
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.8
    • /
    • pp.139-147
    • /
    • 2014
  • We address the problem of corrective control for two asynchronous sequential machines in parallel connection. Each asynchronous machine receives the same external input and shows independent state transition characteristics. We propose a novel control scheme in which only one corrective controller is employed so as to make the closed-loop system of each machine match the behavior of the corresponding reference model. Compared with the former method utilizing two corrective controllers, our scheme can reduce the controller size and computational load in controller design. We present the existence condition and design procedure for a state-feedback corrective controller under the assumption that the controlled machines are of input/state type. The design procedure for the proposed controller is described in an illustrative example.

Item Development for Fashion Products Using Creative Thinking Methods -A Case of Velvet Products- (패션 상품 아이템 개발을 위한 창의적 발상법의 활용 -벨벳 상품의 사례-)

  • Chung, Ihn Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.37 no.2
    • /
    • pp.213-223
    • /
    • 2013
  • This study presents the process of fashion item development with velvet through creative thinking methods. Creativity is one of the most important requirements for a successful job career and education enhancing creative thinking is needed in the area of fabrication, product design, and marketing strategy development. Velvet was selected as a research stimulus because it is a luxurious fabric with various differential properties such as a soft touch, unique luster, excellent drapability, and fine physical properties. The research methodology included creative thinking methods review, the selection of the tools, idea sourcing and listing, sequential idea evaluation and sample product making. After review of the various creative thinking methods, a combination method and forced connection method were employed as research tools to confirm the usefulness of creative thinking training because of their independence of use and application simplicity. A total of 12 university students participated as subjects in this research. After some training, each student derived ten ideas for velvet products that utilized a combination method and forced connection method. A total of 120 ideas were evaluated for novelty, technical possibility, practicality, and marketability; subsequently, 24 ideas were adopted and developed as sample products. The effectiveness of creativity education in fabrication and product design classes was verified through the whole process of product planning.

A Study on the Application of the Raumplan and Plan Libre concepts in the Contemporary Architecture (현대 건축에서 라움플란(Raumplan)과 플랑리브르(Plan Libre) 개념의 변용에 관한 연구)

  • 박몽섭;조극래
    • Korean Institute of Interior Design Journal
    • /
    • v.13 no.2
    • /
    • pp.29-37
    • /
    • 2004
  • This study analyze the architectural space in the aspect of the 'Raumplan' and 'Plan Libre'. These concepts based on the 'Raumplan versus Plan Libre' exhibition in Delft University, Netherlands. It is generally agreed that the concept of 'Plan Libre' in connection with Le Corbusie architecture and 'Raumplan' related to Adolf Loos's works. that exhibition contents was focused an extent of modem architecture. But, These concepts continually influence contemporary architecture and offer diverse vision in architecture. Therefore, this study focused on the analysis that look for common element in the space through the case study and space element connection in change of the values, technical growth. This Paper reveals that Adolf Loos's Raumplan is similar to Louis I. Kahn's 'Room' concept and Ando Tadao's centrifugal space composition method In the dwelling architecture. And the concept 'Plan Libre': non-definitive formal system and the elements : column, free form screening wall is revived as formal application of 3 dimension composition in architecture. and transfer lots, void, and linear space in Rem Koolhaas's urban design projects. These aspects is so called topology. This topological concept is an attempt in view of the space connection state rather than formative viewpoint.