• Title/Summary/Keyword: connected graphs

Search Result 134, Processing Time 0.026 seconds

ON TWO GRAPH PARTITIONING QUESTIONS

  • Rho, Yoo-Mi
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.4
    • /
    • pp.847-856
    • /
    • 2005
  • M. Junger, G. Reinelt, and W. R. Pulleyblank asked the following questions ([2]). (1) Is it true that every simple planar 2-edge connected bipartite graph has a 3-partition in which each component consists of the edge set of a simple path? (2) Does every simple planar 2-edge connected graph have a 3-partition in which every component consists of the edge set of simple paths and triangles? The purpose of this paper is to provide a positive answer to the second question for simple outerplanar 2-vertex connected graphs and a positive answer to the first question for simple planar 2-edge connected bipartite graphs one set of whose bipartition has at most 4 vertices.

ENUMERATION OF GRAPHS WITH GIVEN WEIGHTED NUMBER OF CONNECTED COMPONENTS

  • Song, Joungmin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.1873-1882
    • /
    • 2017
  • We give a generating function for the number of graphs with given numerical properties and prescribed weighted number of connected components. As an application, we give a generating function for the number of q-partite graphs of given order, size and number of connected components.

5-CYCLABILITY IN INFINITE PLANAR GRAPHS

  • JUNG HWAN-OK
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.537-543
    • /
    • 2005
  • A graph is k-cyclable if given k vertices there is a cycle that contains the k vertices. Sallee showed that every finite 3-connected planar graph is 5-cyclable. In this paper Sallee's result is extended to 3-connected infinite locally finite VAP-free plane graphs containing no unbounded faces.

AN EXTENSION OF SALLEE'S THEOREM TO INFINITE LOCALLY FINITE VAP-FREE PLANE GRAPHS

  • Jung Hwan-Ok
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.83-93
    • /
    • 2006
  • A graph is k-cyclable if given k vertices there is a cycle that contains the k vertices. Sallee showed that every finite 3-connected planar graph is 5-cyclable. In this paper, by characterizing the circuit graphs and investigating the structure of LV-graphs, we extend his result to 3-connected infinite locally finite VAP-free plane graphs.

On spanning 3-trees in infinite 3-connected planar graphs

  • Jung, Hwan-Ok
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.1
    • /
    • pp.1-21
    • /
    • 1996
  • In this paper the existence of spanning 3-trees in every 3-connected locally finite vertex-accumulation-point-free planer graph is verified, which is an extension of D. Barnette to infinite graphs and which improves the result of the author.

  • PDF

NORDHAUS-GADDUM TYPE RESULTS FOR CONNECTED DOMINATION NUMBER OF GRAPHS

  • E. Murugan;J. Paulraj Joseph
    • Korean Journal of Mathematics
    • /
    • v.31 no.4
    • /
    • pp.505-519
    • /
    • 2023
  • Let G = (V, E) be a graph. A subset S of V is called a dominating set of G if every vertex not in S is adjacent to some vertex in S. The domination number γ(G) of G is the minimum cardinality taken over all dominating sets of G. A dominating set S is called a connected dominating set if the subgraph induced by S is connected. The minimum cardinality taken over all connected dominating sets of G is called the connected domination number of G, and is denoted by γc(G). In this paper, we investigate the Nordhaus-Gaddum type results for the connected domination number and its derived graphs like line graph, subdivision graph, power graph, block graph and total graph, and characterize the extremal graphs.

CHARACTERIZATION THEOREMS AND 4-ORDERABILITY ON INFINITE MAXIMAL PLANAR GRAPHS

  • Jung Hwan-Ok
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.577-587
    • /
    • 2006
  • We present several properties concerning infinite maximal planar graphs. Results related to the infinite VAP-free planar graphs are also included. Finally, we extend the result of W. Goddard, who showed that every finite 4-connected maximal planar graph is 4-ordered, to infinite strong triangulations.

GENERALIZED CAYLEY GRAPHS OF RECTANGULAR GROUPS

  • ZHU, YONGWEN
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.4
    • /
    • pp.1169-1183
    • /
    • 2015
  • We describe generalized Cayley graphs of rectangular groups, so that we obtain (1) an equivalent condition for two Cayley graphs of a rectangular group to be isomorphic to each other, (2) a necessary and sufficient condition for a generalized Cayley graph of a rectangular group to be (strong) connected, (3) a necessary and sufficient condition for the colour-preserving automorphism group of such a graph to be vertex-transitive, and (4) a sufficient condition for the automorphism group of such a graph to be vertex-transitive.

AN OPTIMAL ALGORITHM FOR FINDING DETH-FIRST SPANNING TREE ON PERMUTATION GRAPHS

  • Mondal, Sukumar;Pal, Madhumangal;Pal, Tapan K.
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.3
    • /
    • pp.727-734
    • /
    • 1999
  • Let G be a connected graph of n vertices. The problem of finding a depth-first spanning tree of G is to find a connected subgraph of G with the n vertices and n-1 edges by depth-first-search. in this paper we propose an O(n) time algorithm to solve this problem on permutation graphs.

A STRUCTURE THEOREM AND A CLASSIFICATION OF AN INFINITE LOCALLY FINITE PLANAR GRAPH

  • Jung, Hwan-Ok
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.3_4
    • /
    • pp.531-539
    • /
    • 2009
  • In this paper we first present a structure theorem for an infinite locally finite 3-connected VAP-free planar graph, and in connection with this result we study a possible classification of infinite locally finite planar graphs by reducing modulo finiteness.

  • PDF