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A STRUCTURE THEOREM AND A CLASSIFICATION
OF AN INFINITE LOCALLY FINITE PLANAR GRAPH

HwaAN-Ox Jung

ABSTRACT. In this paper we first present a structure theorem for an infinite
locally finite 3-connected VAP-free planar graph, and in connection with this
result we study a possible classification of infinite locally finite planar graphs by
reducing modulo finiteness.
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1. Introduction

Let G be an infinite connected planar graph. A path P is a separating path
if there exist subgraphs H and K of G with G = HUK and HNK = P. A
separating path is said to be unbounded if each of the two endvertices of the
path is incident to an unbounded face. A finite set of unbounded separating
paths P = {Py,..., P,} in G will be called a semicycle if there exist connected
subgraphs Gg, G1, ..., Gy of G such that

811 G=|JGi, GonGi=P; forallie{1,...,n}
1=0
and G;NG; =0 foralli,j€{l,...,n} withé# j, and
[S2] Gy is finite, but G; (i = 1,...,n) are infinite.
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In this case, the finite subgraph Gg of G is called the center of the semicycle
P, which will be denoted by C(P). A semicycle P is induced if all paths in P
are induced. Two semicycles P and P’ are disjoint if V(P) N V(P') = §; for
convenience, the set of vertices V(P) (or the set of edges E(P), respectively) of
P will be understood to be the union of all vertices (or edges, respectively) of
the paths in P.
Let P and P’ be disjoint semicycles with P C C(P’) in a connected planar
graph G. A (P,P’)-semiring in G is a subgraph of G consisting of not only
the cycles in P and P’ but also all vertices and edges lying between P and P’.
Bridges of a (P, P’)-semiring R are defined by the bridges connecting P with P’
in R.
A (P, P’)-semiring R is said to be tight if it satisfies following conditions:
[T1] P and P’ are induced.
[T2] For each infinite component H of G—C(P), there exists exactly one path
P in P’ such that the endvertices of P are adjacent to the endvertices of
the foot of H.

(T3] |V(B)nV(P')| <2 for all bridges B of R.

[T4] If B is a bridge of R with V(B) N V(P') = {z,2'}, z # 7, then 22’ €
E(P).

Our first result which was already presented in [6] is as follows:

Theorem A. Let G be an infinite locally finite 3-connected VAP-free planar
graph, and let Py be an induced semicycle in G. Then there exists an infinite
sequence of pairwise disjoint induced semicycles (Pg, P1, Pa, ... ) such that

(1) Pj c C(Pj+1) forall j e {0, 1,2,.. .},
(2) (Pj, Pjt1)-semiring is tight, for all j € {0,1,2,...}, and

3) ¢ =] o).
F=0
Moreover, such an infinite sequence of semicycles (Po, P1, Pz, ...) satisfying
the conditions (1)-(3) is uniquely determined under the given semicycle Po,

In order to describe our main result, let G be an infinite planar graph. Let
A be a partition of V(G) into finite nonempty subsets such that each T' € A
induces a connected subgraph of G, and let further G/A denote the graph which
arises by contracting each T' € A onto a single vertex vr, and letting vz and
vy, for distinet T, 77 € A, be adjacent if and only if there exists an edge in G
connecting vertices T' and 7”.

For two graphs G and G, we may say that G and G’ have the same infinite
structure if there are partitions A and A’ of V(G) and V(G’) respectively, such
that G/A and G’/A’ are isomorphic. This relation between graphs is clearly
reflexive and symmetric, but unfortunately not transitive. In order to obtain an
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equivalence relation we form the transitive closure of the relation in question; we
denote this relation by ~,. Each of the corresponding equivalence classes will
be called an infinite type of graphs. Our main result in this paper is as follows:

Theorem B. Ewvery infinite locally finite connected planar graph has a countable
tree in its infinity type.

In order to get a classification of locally finite connected planar graphs, it is
therefore necessary to obtain a complete set of invariants for the locally finite
countable trees. A locally finite tree is called a full ramification (following Jung
[5]) if it is a subdivision of a tree in which each vertex has degree greater than or
equal to 3 (or see the references [1] and [3] which are related to these contents).

A countable tree T' has uncountably many ends if and only if it contains a full
ramification, and then there exists a maximal full ramification which contains
all full ramifications of T" as subgraphs. It is not difficult to show that all full
ramifications belong to the same infinity type; it is formed by those locally finite
connected infinite graphs which do not possess a free end (defined in [5]). The
locally finite trees without a full ramification are those in which each end has an
order in the sense of Jung [5].

A locally finite tree can either be built up by a transfinite process indicated by
this concept of order, or it arises from a full ramification by attaching branches,
consisting of trees of the first kind; i.e., in which each end has an order.

2. Terminology

The terminology will be that of [2]. The graphs we are considered are undi-
rected, without loops and multiple edges. If x € V(G), the set Ng(z) := {y €

V(G)|zy € E(G)} is the neighborhood of z in G, and its cardinality dg () is
the degree of . A path P = {xo,...,n} is a graph with V(P) = {zo, ... ,zn},
x; #x; ifi # j and E(P) = {xmiﬂ [0 <1< n} A ray or one-way infinite
path P := (xo,21,...) is defined similarly.

The ends of a graph G (this concept was introduced by Thomassen [8] and
independently by Halin [4]) are the classes of the equivalence relation ~¢ defined
on the set of all one-way infinite paths of G by: P ~g P’ if and only if there
is a one-way infinite path P” whose intersections with P and P’ are infinite; or
equivalently if and only if Cq_g(P) = Cg—g(P’) for any finite subset S\ V(G)
(where Cqs(P) denotes the component of G — S containing a subpath of P).

Let G be a graph and H be a subgraph of G. Define a relation ~ on F(G) \
E(H) by the condition that e; ~ ey if there exists a finite path P such that

(i) the first and last edges of P are e; and es, respectively, and
(ii) P and H are edge-disjoint.
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A subgraph of G — E(H) induced by an equivalence class under the relation ~
is called a bridge of H in G. If B is a bridge of H in G, then the elements of
V(H)NV(B) are called the vertices of attachment of B.

3. Structure theorem

To simplify the description of the contents in this section, we may say that
an infinite locally finite planar graph is an LV-graph (following Jung [7]) if it is
3-connected and VAP-free. Let P be a separating path in an LV-graph G, and
let H be an infinite component of G — P. Let further = (Z, respectively) be the
first (the last, respectively) vertex on P adjacent to H, in the natural order.
Then, clearly the subpath of P connecting = and z, which will be called the foot
of H on P, contains all neighbors of H on P. Since G is VAP-free, we easily see
that the feet of distinct infinite components of G — P are pairwise edge-disjoint.
The proof of our main result will make use of the following proposition. For the
sake of completeness a proof is included below.

Proposition 3.1. Let G be an LV-graph and let P be an induced unbounded
separating path in G with HUK = G and HNK = P. Further let H be infinite
and HY, ... H™ be infinite components of H — P. Then there ezist induced
unbounded separating paths P ... P™) with PO C H® (i =1,...,r) which
satisfy the following properties:

(1) Fach of the endvertices of P(") is adjacent to an endvertex of the foot of
H® on P (i=1,...,r).

(2) For each bridge connecting P with U P there exists an index j €
=1
{1,...,r} such that all vertices of attachment of B lie on PU P, and
[V(B)nV(PD)| < 2.

(3) If V(B)NV(P®W) = {2,2'} for a bridge B connecting P with U PO,
=1
z # 7', it must hold z2' € E(PW).
Moreover, for a given separating path P, the induced unbounded separating
paths PO, ... PU) satisfying the conditions (1)—(3) is uniquely determined.

Proof. We will construct separating paths PV, ..., P(") satisfying the condi-
tions of this proposition. To do this, for i = 1,...,r let F*) be the foot of H®
on P with the endvertices z; and Z;. We define a set of vertices V® of H® as
follows: v € V@ if and only if there exists a bounded face of G incident to v

and a vertex of F(®). Let us consider the induced subgraph @ [F My V(i)] which

may provisionally be denoted by L(®). It is clear that L(*) is connected. To show
L® is 2-connected, suppose to the contrary that L® would contain a vertex u
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such that L) — v is disconnected. Then, since G is 3-connected, we would have
u € FONV(L®), which contradicts to the fact H® NP = (.

Now C) denotes the outer cycle of L, and set P = C(®) — F(®) whose
endvertices are y; and 7; with z;y;, Z:%; € E(C™). Since P is an unbounded
separating path and w; is the first neighbor of H¥) | it follows that z; is incident
to an unbounded face of G. Thus, from the choice of V(¥ and y;, the edge z;y;
(and therefore the vertex ;) is also incident to the unbounded face. Similarly
we can verify that §; is incident to an unbounded face, which shows that P(*) is
an unbounded separating path.

To show that P is induced, suppose for contradiction that there exists a
subpath u = u1,ug, ... ,ur = v of P® with k> 3 and uv € E(G). Then we see
that

Pi= [p@) ~Au, ... ,uk_l}] U {uv}

is also an unbounded separating path of G with the same endvertices as P,
Further the elements of Vj (in particular us) lie in the interior of LW je., uy
cannot be incident to an unbounded face of L(), since L is induced. Hence
there cannot be exist a bounded face of G incident to both us and a vertex of
F®_ which contradicts the construction of L(®).

Next we will prove that the constructed paths P(1), ..., P{") hold the proper-
ties (1)-(3). But, since the claim (1) follows immediately from the construction
of L™ above (i =1,...,r), we need only to verify the assertions (2) and (3).

To see (2), let B be a bridge which connects P with | JP*) and let V(B) N
V(PU)) #£ @. Then, by considering the fact that H®), ... ,H(™ are pairwise
disjoint and that PU) C HU) we see that all vertices of attachment of B are
contained in PY). Now assume (reductio ad absurdum) that

V(B) N V(PY)) = {yl, . ,yk} with & > 3.

Note that B cannot be isomorphic to K». Since B is a connected subgraph of
G, there must exist a y;yx-path in B, and thus the vertices yo, ..., yr—1 cannot
be incident to a bounded face which is incident to a vertex of P. Therefore we
have a contradiction to the construction of L) (or P} as we wanted.

It remains to show that the assertion (3) is also true. For this, let B be a bridge

connecting P with U PO satisfying the hypothesis in (3) in this proposition.
i=1

Since the vertices of attachment of B are precisely z and 2/, they must be incident

to a common bounded face. Now suppose to the contrary that zz’ ¢ E(G). Then,

from the fact that the zz’-subpath (say W) of PU) has the length at least 2,

there would exist a vertex (say v) of the subpath with v € V(W) \ {z,2'}. By
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a similar argument above (more precisely, by replacing yz,...,yx—1 by v and
y1Yk-path by zz'-subpath), we can also obtain a contradiction.

Now we will show the uniqueness. Let 7; and Pz be the set of infinite un-
bounded separating paths satisfying the properties described in this proposition.
First note that, for given separating path P, the foot of the infinite components
of G — P are uniquely determined. But, since the endvertices (say z; and &;)
of the foot of an infinite component H") must be incident to unbounded faces,
we can find the unique vertices (say y; and g, respectively) incident to z; and
Z; such that the edges z;y; and Z;y; are incident to the unbounded faces. Thus,
for each infinite component H® of G — P, the vertices y; and ; are uniquely
determined; i.e., the endvertices of each separating path for H () must precisely
be y; and ;. In particular the number of the paths in both P; and P; is the
same as that of the infinite components of G — P.

Now let Pl(’) € Py and .P2(i) € P, be separating paths in H® satisfying the
properties in this proposition. As observed above, the endvertices of these paths
are commonly y; and 7. Note that y;§; ¢ E(G) because G is 3-connected, and
therefore we have RPJ@[ >3forj=1,2.

Assume first that V(Pfi) )OV(PZ(“) = {y;, §; }. Then clearly either all vertices
of PQ(i) —{yi, ¥;} lie in the interior of the cycle

PP UFDy {%yi,ii?ji}
or those of Pl(i) — {4, 7:} lie in the interior of the cycle
P2(i) UF®y {xe%, @%}a

where F(®) denotes the foot of H®. But, because of the 3-connectedness of G,

there have to exist a path between Pl(i) — {¥:,%:} and PQ(i) —{v:,%:}, and hence

the bridge containing Pz(i) which connects P with Pl(i) has more than 2 vertices

of attachment, which contradicts the condition (2). Thus V(Pl(i))ﬁ V(Pz(i)) > 3.
To show Pl(i) = Pg(i), set

VPO NVEP) = {2120, . 2ecr 20}

with 4 = z; and z; = §;. We will prove that zzzxy1 € E(G) for all k €
{1,...,5~1}. Then, since both Pl(i) and Pz(i) are induced, we can get Pl(i) = Pz(i)
as desired. For this, assume to the contrary that there exists a k such that
2k2k+1 € E(G). For j = 1,2, let us denote the z2zx41-subpath of Pj(i) by W;.
Then from the assumption we have |V(W;)| > 3; i.e., there exists a vertex (say
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v;) of W; — {2k, zx+1}. Notice that there must also exist a v1ve-path in G by the
connectedness number. Thus, by an argument similar to one above, we obtain
a desired contradiction by replacing Pj(z) by W; (j =1,2) and ¥, ¥; by 2k, 2k41,
which completes the proof. O

Corollary 3.2. Let G be an LV-graph. Then, for a given induced semicycle
P ={Py,...,P.} in G, there exists a unique semicycle P' with P C C(P’) and
V(P)NV(P') =0 such that the (P, P')-semiring is tight.

We are now prepared to prove Theorem A.

Proof of Theorem A : Let Py be an arbitrary chosen induced semicycle in G.
Since Py satisfies the hypothesis of Corollary 3.2 and G —C(P;) contains infinite
components for all j € {0,1,2,...}, we obtain an infinite sequence of induced
semicycles (Po, P1, P2, ... ) satisfying the properties (1) and (2). To show (3),
let v € V(G). If we set the metric distance between v and V(Py) by d,, we
see that v € V(C(Py,)) by the construction of the semicycles {Pg, P1, P2, ...},
which implies (3).

The uniqueness of such a sequence of semirings follows from Corollary 3.2
above. The proof is complete. O

4. Classification

In this section we study a possible classification of infinite planar graphs by
reducing modulo finiteness; the concept seems especially useful for locally finite
graphs because they can be represented by trees.

If G is an infinite planar graph and if A is a partition of V(G) into finite
nonempty subsets such that each T € A induces a connected subgraph of G,
then we get all members (up to isomorphisms) of the infinite type of G in the
following way: Replace each vertex v of G by a connected finite graph H, such
that, for v # o', H,N H,» # @ and draw edges between H, and H, if and oAnly if
v and :g’ are adjacent in G. Then, if the constructed graph is denoted by G, the
form G/A is the same as indicated in section 1. We call a structural property
Q of graphs an infinite property if the following holds: If one of the members of
an infinity type has Q, then Q is shared by all its members. To study infinity
properties it is sufficient to consider an infinite planar graph G, a A as above and
to find out which structural features are preserved by the canonical surjective
mapping

7:G— G/A

and its inverse 7~!. We shall see that infinite degree, number of components and

end structure have the infinite properties. It is not hard to show the following
results.
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Proposition 4.1. Let G and A as above be given. If T € A, then a vertex vr
has an infinite degree d in G/ if and only if there is a vertex v in T which has
infinite degree d in G.

Corollary 4.2. Locally finiteness is an infinite property.
Corollary 4.3. The number of connected components is an infinite property.

From Corollary 4.3 we can also conclude that connectedness is an infinite
property.

Proposition 4.4. Let G and A as above be given. If U is a one-way infinite
path in G, then T(U) is a one-way infinite path in G/A; and, vice versa, if there
is a one-way infinite path U in G /A, then there ezists at least one one-way
infinite path U with 7(U) = U.

However, not necessarily every two-way infinite path in & is mapped onto a
two-way infinite path in G/A, namely if the two one-way infinite paths of the
path belong to the same end of G. But the structure of ends is preserved.

Proposition 4.5. Let G and A as above be given. If U and U’ are one-way
infinite paths in G which are separated by a finite subgraph F of G, then 7(F')
separates T(U) and T(U') in G/A.

Clearly Proposition 4.5 can be reversed as follows: It U and U’ are one-way
infinite paths in G/A which are separated by a finite F, then there are one-way
infinite paths U and U’ with U C 7~ 1(U7) and U’ C 7~1(U") which are separated
in G by 77H(F).

Corollary 4.6. Free ends of G correspond to free ends of G/A.

From Corollary 4.6 it can easily be verified that the orders of ends correspond-
ing under 7 in G and G/A are equal. In order to get a classification of infinite
graphs one would like to choose a characteristical, especially simpler member
out of each infinite type.

Here one naturally thinks of trees. But not all infinity types have a tree
among its members, as for instance the graphs P; o, X {v} and P; o x {v} show,
where v is a new vertex. Now we are prepared to show Theorem B.

Proof of Theorem B : Let Hgy be a finite connected induced subgraph of
G. Then, since G is locally finite, G — Hy has finitely many components, say
Ci,Cs,...,C,.. Foreachi=1,...,r, let F; be the finite set of vertices in C;
which are adjacent to some vertices of Hp, and set H; be a finite connected in-
duced subgraph of C; containing F;. Then C; — H; has finitely many components

Ci,l? Ci,?a s 703',1",' (l = 1,. .. 77‘)
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In each C; ; choose a finite connected induced subgraph H; ; containing all ver-
tices of C; ; from which there leads an edge into H;. Then delete H; ; in C;
consider the finitely many components, and so on. We can see that, by the
subgraphs H; ;, a partition A of V(G) is defined such that G/A is a tree, which

follows the assertion of the theorem. Our proof is complete. |
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