• Title/Summary/Keyword: conidial germination

Search Result 127, Processing Time 0.022 seconds

Preparation and Treatment of Sulfur Dioxide Gas Generating Agent for Storage of Grape Fruits (포도 저장을 위한 아황산가스 발생제의 제조 및 처리 방법)

  • Choi, Seong-Jin
    • Food Science and Preservation
    • /
    • v.15 no.6
    • /
    • pp.791-795
    • /
    • 2008
  • In order to establish the method to prepare and use the sulfur dioxide gas generating agent in low temperature storage of grape fruits, the $SO_2$ generation capacity from various sulfite compounds was investigated, and the method to regulate $SO_2$ gas generation and to detect the gas was developed. The conidial germination and mycelium growth of Botrytis cinerea which causes gray mold disease during grape fruit storage was completely inhibited at the $SO_2$ gas concentration of 400 ppm and 3200 ppm, respectively. Sodium hydrosulfite generated the most amount of $SO_2$ gas among the investigated 5 different sulfite or bisulfite compounds. By adjusting the number of pinholes on packaging film of the compound or by adding pH adjusting agent, e.g. citric acid or phosphates, it was possible to regulate the amount and duration of $SO_2$ gas generation from the compound. Because malachite green was quantitatively discolored by $SO_2$ gas, the solution or impregnated paper with the compound could be practically utilized as a indicator detecting $SO_2$ gas. Finally, when Muscat Bailey A grape was stored at low temperature with $SO_2$ gas generating agent, the disease incidence was reduced after storage.

A Short-chain Dehydrogenase/reductase Gene is Required for Infection-related Development and Pathogenicity in Magnaporthe oryzae

  • Kwon, Min-Jung;Kim, Kyoung-Su;Lee, Yong-Hwan
    • The Plant Pathology Journal
    • /
    • v.26 no.1
    • /
    • pp.8-16
    • /
    • 2010
  • The phytopathogenic fungus Magnaporthe oryzae is a major limiting factor in rice production. To understand the genetic basis of M. oryzae pathogenic development, we previously analyzed a library of T-DNA insertional mutants of M. oryzae, and identified ATMT0879A1 as one of the pathogenicity-defective mutants. Molecular analyses and database searches revealed that a single TDNA insertion in ATMT0879A1 resulted in functional interference with an annotated gene, MGG00056, which encodes a short-chain dehydrogenase/reductase (SDR). The mutant and annotated gene were designated as $MoSDR1^{T-DNA}$ and MoSDR1, respectively. Like other SDR family members, MoSDR1 possesses both a cofactor-binding motif and a catalytic site. The expression pattern of MoSDR1 suggests that the gene is associated with pathogenicity and plays an important role in M. oryzae development. To understand the roles of MoSDR1, the deletion mutant ${\Delta}Mosdr1$ for the gene was obtained via homology-dependent gene replacement. As expected, ${\Delta}Mosdr1$ was nonpathogenic; moreover, the mutant displayed pleiotropic defects in conidiation, conidial germination, appressorium formation, penetration, and growth inside host tissues. These results suggest that MoSDR1 functions as a key metabolic enzyme in the regulation of development and pathogenicity in M. oryzae.

Identification of Genes Encoding Heat Shock Protein 40 Family and the Functional Characterization of Two Hsp40s, MHF16 and MHF21, in Magnaporthe oryzae

  • Yi, Mi-Hwa;Lee, Yong-Hwan
    • The Plant Pathology Journal
    • /
    • v.24 no.2
    • /
    • pp.131-142
    • /
    • 2008
  • Magnaporthe oryzae, the causal agent of the rice blast disease, poses a worldwide threat to stable rice production. The large-scale functional characterization of genes controlling the pathogenicity of M. oryzae is currently under way, but little is known about heat shock protein 40 (Hsp40) function in the rice blast fungus or any other filamentous plant pathogen. We identified 25 genes encoding putative Hsp40s in the genome of M. oryzae using a bioinformatic approach, which we designated M. oryzae heat shock protein forty (MHF 1-25). To elucidate the roles of these genes, we characterized the functions of MHF16 and MHF21, which encode type ill and type n Hsp40 proteins, respectively. MHF16 and MHF21 expression was not significantly induced by heat shock, but it was down-regulated by cold shock. Knockout mutants of these genes $({\Delta}$mhf16 and ${\Delta}$mhf21) were viable, but conidiation was severely reduced. Moreover, sectoring was observed in the ${\Delta}mhf16$ mutant when it was grown on oatmeal agar medium. Conidial germination, appressorium formation, and pathogenicity in rice were not significantly affected in the mutants. The defects in conidiation and colony morphology were fully complemented by reintroduction of wild type MHF16 and MHF21 alleles, respectively. These data indicate that MHF16 and MHF21 play important roles in conidiation in the rice blast fungus.

The Influence of UV Irradiation on Stilbene Contents and Gray Mold Incidence in Grapevine Leaves (자외선 조사가 포도잎의 Stilbene 함량 및 잿빛곰팡이병 발생에 미치는 영향)

  • Choi, Seong-Jin
    • Horticultural Science & Technology
    • /
    • v.30 no.5
    • /
    • pp.493-500
    • /
    • 2012
  • In order to confirm the possibility of UV utilization as a means for disease protection in grapevine the stilbene contents and the disease incidence in UV irradiated leaves were investigated. UV irradiation significantly increased the contents of resveratrol, piceatannol and piceid, in them, resveratrol and piceid showed in vitro inhibition of spore germination and mycelium growth of Botrytis cinerea. The accumulation of both the stilbenes in UV irradiated leaves seems to be enough to inhibit the B. cinerea growth, since the formation of necrotic spot on the leaves was considerably inhibited when they were inoculated with the conidial spores of B. cinerea. However the stilbenes were accumulated only in the leaves exposed directly to UV showing a limited translocation ability of the compounds. Thus it would be necessary to develop a method to evenly irradiate the entire crown of plant with UV in order to expect to protect them from disease by UV irradiation.

Integration of Bological and Chemical Methods for the Control of Pepper Gray Mold Rot Under Commercial Greenhouse Conditions

  • Park, Seon-Hee;Bae, Dong-Won;Lee, Joon-Taek;Chung, Sung-Ok;Kim, Hee-Kyu
    • The Plant Pathology Journal
    • /
    • v.15 no.3
    • /
    • pp.162-167
    • /
    • 1999
  • Integration of microbial antagonists with fungicides was tried to control the gray mold caused by Botrytis cinerea on pepper in greenhouse conditions and to reduce fungicide uses. All of the selected bacterial antagonists, Bacillus amyloliquefaciens BL3, Paenibacillus polymyxa BL4, and Pseudomonas putida Cha94, completely inhibited the conidial germination of B. cinerea until 30 days after treatment. However, bacterial colonization of pepper phylloplane was poor in BL4, while the other bacterial isolates and the fungal antagonist Trichoderma harzianum TM colonized well on the phylloplane, maintaining the population density of 104-105 cfu/g until 15 days after microbial treatments. Out of 13 kinds of selected fungicides used for gray mold diseases, polyoxin B and BKF 1995 showed the most discriminatory activity on the fungal growth between B. cinerea and TM. TM grew readily on the media containing those fungicides, while B. cinerea showed poor or no mycelial growth on them. The selected fungicides and antagonists alone reduced incidence of gray mold on pepper, showing disease indices of about 2.4 to 3.0, while its was increased up to 4.2 in the untreated control. Alternate treatments with the antagonists and 2-fold diluted fungicides inhibited the disease incidence as much as the antagonists or fungicides alone, and reduced the secondary inoculum more than the single treatments. This suggests that integration of antagonists and fungicides may be an efficient way to reduce fungicide sprays with reliable control efficacy of the disease. However, there was not much difference in the early and mid-term disease progress among the treatments and the untreated control, probably due to extremely favorable environmental conditions for the disease development in this experiment.

  • PDF

Antagonistic Activities of Bacillus spp. Strains Isolated from Tidal Flat Sediment Towards Anthracnose Pathogens Colletotrichum acutatum and C. gloeosporioides in South Korea

  • Han, Joon-Hee;Shim, Hongsik;Shin, Jong-Hwan;Kim, Kyoung Su
    • The Plant Pathology Journal
    • /
    • v.31 no.2
    • /
    • pp.165-175
    • /
    • 2015
  • Anthracnose is a fungal disease caused by Colletotrichum species that is detrimental to numerous plant species. Anthracnose control with fungicides has both human health and environmental safety implications. Despite increasing public concerns, fungicide use will continue in the absence of viable alternatives. There have been relatively less efforts to search antagonistic bacteria from mudflats harboring microbial diversity. A total of 420 bacterial strains were isolated from mudflats near the western sea of South Korea. Five bacterial strains, LB01, LB14, HM03, HM17, and LB15, were characterized as having antifungal properties in the presence of C. acutatum and C. gloeosporioides. The three Bacillus atrophaeus strains, LB14, HM03, and HM17, produced large quantities of chitinase and protease enzymes, whereas the B. amyloliquefaciens strain LB01 produced protease and cellulase enzymes. Two important antagonistic traits, siderophore production and solubilization of insoluble phosphate, were observed in the three B. atrophaeus strains. Analyses of disease suppression revealed that LB14 was most effective for suppressing the incidence of anthracnose symptoms on pepper fruits. LB14 produced antagonistic compounds and suppressed conidial germination of C. acutatum and C. gloeosporioides. The results from the present study will provide a basis for developing a reliable alternative to fungicides for anthracnose control.

β-Amino-n-butyric Acid Regulates Seedling Growth and Disease Resistance of Kimchi Cabbage

  • Kim, Yeong Chae;Kim, Yeon Hwa;Lee, Young Hee;Lee, Sang Woo;Chae, Yun-Soek;Kang, Hyun-Kyung;Yun, Byung-Wook;Hong, Jeum Kyu
    • The Plant Pathology Journal
    • /
    • v.29 no.3
    • /
    • pp.305-316
    • /
    • 2013
  • Non-protein amino acid, ${\beta}$-amino-n-butyric acid (BABA), has been involved in diverse physiological processes including seedling growth, stress tolerance and disease resistance of many plant species. In the current study, treatment of kimchi cabbage seedlings with BABA significantly reduced primary root elongation and cotyledon development in a dose-dependent manner, which adverse effects were similar to the plant response to exogenous abscisic acid (ABA) application. BABA was synergistically contributing ABA-induced growth arrest during the early seedling development. Kimchi cabbage leaves were highly damaged and seedling growth was delayed by foliar spraying with high concentrations of BABA (10 to 20 mM). BABA played roles differentially in in vitro fungal conidial germination, mycelial growth and conidation of necrotroph Alternaria brassicicola causing black spot disease and hemibiotroph Colletotrichum higginsianum causing anthracnose. Pretreatment with BABA conferred induced resistance of the kimchi cabbage against challenges by the two different classes of fungal pathogens in a dose-dependent manner. These results suggest that BABA is involved in plant development, fungal development as well as induced fungal disease resistance of kimchi cabbage plant.

Studies on the Synthesis and Fungicidal Activity of Cadmium Pentachlorophenolxanthate (Cadmium pentachlorophenolxanthate의 합성 및 살균작용에 관한 연구)

  • Do Un Hoi;Lee Sung Hwan;Kang In Mok
    • Korean journal of applied entomology
    • /
    • v.9 no.1
    • /
    • pp.1-6
    • /
    • 1970
  • Cadmium pentachlorophenolxanthate has been synthesized with pentachlorophenol, carbondisulfide sodium hydroxide and cadmium chloride and its fungicidal activity was tested to Pyricularia oryzae and Cochliobolus miyabeanus. The results are summarized as followes; 1) The sample V synthesized by acidifying the crude PCP-xanthate solution at pH 8, then treated with $BaCl_2\;and\;CaC_2$ showed the highest purity, and the yield was $85.1\%$. 2) The same sample of $50\%$ wettable dust formulation inhibited conidial germination of P. oryzae and C. miyabeanus completely at 10 and 20 ppm, respectively. (Fig. 1) 3) The sample of $1.5\%$ dust formulation inhibited mycelial growth of P. oryzae and C. miyabeanus with 96 and $65\%$, respectively. The results were similar to those obtained by Ceresan calcium (Fig. 2) 4) Both dust and wettable powder formulations had no phytotoxcity on rice seedlings.

  • PDF

Rapid Detection of SdhBP225F and SdhBH272R Mutations in Boscalid Resistant Botrytis cinerea Strains by ARMS-PCR

  • Liu, Xin;Zeng, Rong;Gao, Shigang;Xu, Lihui;Dai, Fuming
    • The Plant Pathology Journal
    • /
    • v.35 no.1
    • /
    • pp.71-76
    • /
    • 2019
  • $SdhB^{P225F}$ and $SdhB^{H272R}$ mutations have been found associated with boscalid resistance in Botrytis cinerea from strawberry in Shanghai, China. For rapid detection of two mutations, tetra-primers were designed and optimized to gain the relatively high accuracy and specificity based on the ARMS-PCR technique, by which resistance can be identified with different lengths of products on agarose gels. The tetra-primer ARMS-PCR systems for $SdhB^{P225F}$ and $SdhB^{H272R}$ were validated by 9 SdhB-squenced strains repeatedly. Then, sensitivity of 30 more strains were also tested by the methods, which were accordant with genotypes by sequencing and the sensitivity of conidial germination to boscalid by 100%. Thus, the methods developed in this study are proved to be rapid, inexpensive, accurate and practical for resistance detection of Botrytis cinerea caused by $SdhB^{P225F}$ and $SdhB^{H272R}$ mutations.

The Small GTPase CsRAC1 Is Important for Fungal Development and Pepper Anthracnose in Colletotrichum scovillei

  • Lee, Noh-Hyun;Fu, Teng;Shin, Jong-Hwan;Song, Yong-Won;Jang, Dong-Cheol;Kim, Kyoung Su
    • The Plant Pathology Journal
    • /
    • v.37 no.6
    • /
    • pp.607-618
    • /
    • 2021
  • The pepper anthracnose fungus, Colletotrichum scovillei, causes severe losses of pepper fruit production in the tropical and temperate zones. RAC1 is a highly conserved small GTP-binding protein in the Rho GT-Pase family. This protein has been demonstrated to play a role in fungal development, and pathogenicity in several plant pathogenic fungi. However, the functional roles of RAC1 are not characterized in C. scovillei causing anthracnose on pepper fruits. Here, we generated a deletion mutant (𝜟Csrac1) via homologous recombination to investigate the functional roles of CsRAC1. The 𝜟Csrac1 showed pleiotropic defects in fungal growth and developments, including vegetative growth, conidiogenesis, conidial germination and appressorium formation, compared to wild-type. Although 𝜟Csrac1 was able to develop appressoria, it failed to differentiate appressorium pegs. However, 𝜟Csrac1 still caused anthracnose disease with significantly reduced rate on wounded pepper fruits. Further analyses revealed that 𝜟Csrac1 was defective in tolerance to oxidative stress and suppression of host-defense genes. Taken together, our results suggest that CsRAC1 plays essential roles in fungal development and pathogenicity in C. scovilleipepper fruit pathosystem.