DOI QR코드

DOI QR Code

A Short-chain Dehydrogenase/reductase Gene is Required for Infection-related Development and Pathogenicity in Magnaporthe oryzae

  • Kwon, Min-Jung (Department of Agricultural Biotechnology, Center for Fungal Genetic Resources, and Center for Fungal Pathogenesis, Seoul National University) ;
  • Kim, Kyoung-Su (Department of Agricultural Biotechnology, Center for Fungal Genetic Resources, and Center for Fungal Pathogenesis, Seoul National University) ;
  • Lee, Yong-Hwan (Department of Agricultural Biotechnology, Center for Fungal Genetic Resources, and Center for Fungal Pathogenesis, Seoul National University)
  • Received : 2009.10.28
  • Accepted : 2009.11.22
  • Published : 2010.03.01

Abstract

The phytopathogenic fungus Magnaporthe oryzae is a major limiting factor in rice production. To understand the genetic basis of M. oryzae pathogenic development, we previously analyzed a library of T-DNA insertional mutants of M. oryzae, and identified ATMT0879A1 as one of the pathogenicity-defective mutants. Molecular analyses and database searches revealed that a single TDNA insertion in ATMT0879A1 resulted in functional interference with an annotated gene, MGG00056, which encodes a short-chain dehydrogenase/reductase (SDR). The mutant and annotated gene were designated as $MoSDR1^{T-DNA}$ and MoSDR1, respectively. Like other SDR family members, MoSDR1 possesses both a cofactor-binding motif and a catalytic site. The expression pattern of MoSDR1 suggests that the gene is associated with pathogenicity and plays an important role in M. oryzae development. To understand the roles of MoSDR1, the deletion mutant ${\Delta}Mosdr1$ for the gene was obtained via homology-dependent gene replacement. As expected, ${\Delta}Mosdr1$ was nonpathogenic; moreover, the mutant displayed pleiotropic defects in conidiation, conidial germination, appressorium formation, penetration, and growth inside host tissues. These results suggest that MoSDR1 functions as a key metabolic enzyme in the regulation of development and pathogenicity in M. oryzae.

Keywords

References

  1. Butchko, R. A. E., Plattner, R. D. and Proctor, R. H. 2003. FUM13 encodes a short chain dehydrogenase/reductase required for C-3 carbonyl reduction during fumonisin biosynthesis in Gibberella moniliformis. J. Agric. Food Chem. 51:3000-3006. https://doi.org/10.1021/jf0262007
  2. Cheng, W. H., Endo, A., Zhou, L., Penney, J., Chen, H. C., Arroyo, A., Leon, P., Nambara, E., Asami, T., Seo, M., Koshiba, T. and Sheen, J. 2002. A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell 14:2723-2743. https://doi.org/10.1105/tpc.006494
  3. Chi, M. H., Park, S. Y., Kim, S. and Lee, Y. H. 2009a. A quick and safe method for fungal DNA extraction. Plant Pathol. J. 25:108-111. https://doi.org/10.5423/PPJ.2009.25.1.108
  4. Chi, M. H., Park, S. Y., Kim, S. and Lee, Y. H. 2009b. A novel pathogenicity gene is required in the rice blast fungus to suppress the basal defenses of the host. PLoS Pathog. 5:e1000401. https://doi.org/10.1371/journal.ppat.1000401
  5. Choi, J., Kim, Y., Kim, S., Park, J. and Lee, Y. H. 2009. MoCRZ1, a gene encoding a calcineurin-responsive transcription factor, regulates fungal growth and pathogenicity of Magnaporthe oryzae. Fungal Genet. Biol. 46:243-254. https://doi.org/10.1016/j.fgb.2008.11.010
  6. Choi, J., Park, J., Jeon, J., Chi, M. H., Goh, J., Yoo, S. Y., Jung, K., Kim, H., Park, S. Y., Rho, H. S., Kim, S., Kim, B. R., Han, S. S., Kang, S. and Lee, Y. H. 2007. Genome-wide analysis of TDNA integration into the chromosomes of Magnaporthe oryzae. Mol. Microbiol. 66:371-382. https://doi.org/10.1111/j.1365-2958.2007.05918.x
  7. Choi, J. H., Kim, Y. and Lee, Y. H. 2009. Functional analysis of MCNA, a gene encoding a catalytic subunit of calcineurin, in the rice blast fungus Magnaporthe oryzae. J. Microbiol. Biotechnol. 19:11-16.
  8. Choi, W. and Dean, R. A. 1997. The adenylate cyclase gene MAC1 of Magnaporthe grisea controls appressorium formation and other aspects of growth and development. Plant Cell 9:1973-1983. https://doi.org/10.1105/tpc.9.11.1973
  9. Chumley, F. G. and Valent, B. 1990. Genetic analysis of melanindeficient, nonpathogenic mutants of Magnaporthe grisea. Mol. Plant-Microbe Interact. 3:135-143. https://doi.org/10.1094/MPMI-3-135
  10. Dean, R. A., Talbot, N. J., Ebbole, D. J., Farman, M. L., Mitchell, T. K., Orbach, M. J., Thon, M., Kulkarni, R., Xu, J. R., Pan, H. Q., Read, N. D., Lee, Y. H., Carbone, I., Brown, D., Oh, Y. Y., Donofrio, N., Jeong, J. S., Soanes, D. M., Djonovic, S., Kolomiets, E., Rehmeyer, C., Li, W. X., Harding, M., Kim, S., Lebrun, M. H., Bohnert, H., Coughlan, S., Butler, J., Calvo, S., Ma, L. J., Nicol, R., Purcell, S., Nusbaum, C., Galagan, J. E. and Birren, B. W. 2005. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434:980-986. https://doi.org/10.1038/nature03449
  11. DeLong, A., Calderon-Urrea, A. and Dellaporta, S. L. 1993. Sex determination gene TASSELSEED2 of maize encodes a shortchain alcohol dehydrogenase required for stage-specific floral organ abortion. Cell 74:757-768. https://doi.org/10.1016/0092-8674(93)90522-R
  12. Gritz, L. and Davies, J. 1983. Plasmid-encoded hygromycin B resistance: the sequence of hygromycin B phosphotransferase gene and its expression in Escherichia coli and Saccharomyces cerevisiae. Gene 25:179-188. https://doi.org/10.1016/0378-1119(83)90223-8
  13. Howard, R. J., Ferrari, M. A., Roach, D. H. and Money, N. P. 1991. Penetration of hard substrates by a fungus employing enormous turgor pressures. Proc. Natl. Acad. Sci. U S A 88:11281-11284. https://doi.org/10.1073/pnas.88.24.11281
  14. Jornvall, H., Hoog, J. O. and Persson, B. 1999. SDR and MDR: completed genome sequences show these protein families to be large, of old origin, and of complex nature. FEBS Lett. 445:261-264. https://doi.org/10.1016/S0014-5793(99)00130-1
  15. Jornvall, H., Persson, B., Krook, M., Atrian, S., Gonzalez-Duarte, R., Jeffery, J. and Ghosh, D. 1995. Short-chain dehydrogenases/reductases (SDR). Biochemistry 34:6003-6013. https://doi.org/10.1021/bi00018a001
  16. Jeon, J., Goh, J., Yoo, S., Chi, M. H., Choi, J., Rho, H. S., Park, J., Han, S. S., Kim, B. R., Park, S. Y., Kim, S. and Lee, Y. H. 2008. A putative MAP kinase kinase kinase, MCK1, is required for cell wall integrity and pathogenicity of the rice blast fungus, Magnaporthe oryzae. Mol. Plant-Microbe Interact. 21: 525-534. https://doi.org/10.1094/MPMI-21-5-0525
  17. Jeon, J., Park, S. Y., Chi, M. H., Choi, J., Park, J., Rho, H. S., Kim, S., Goh, J., Yoo, S., Park, J. Y., Yi, M., Yang, S., Kwon, M. J., Han, S. S., Kim, B. R., Khang, C. H., Park, B., Lim, S. E., Jung, K., Kong, S., Karunakaran, M., Oh, H. S., Kim, H., Kang, S., Choi, W. B. and Lee, Y. H. 2007. Genome-wide functional analysis of pathogenicity genes in the rice blast fungus. Nat. Genet. 39:561-565. https://doi.org/10.1038/ng2002
  18. Kallberg, Y., Oppermann, U., Jornvall, H. and Persson, B. 2002. Short-chain dehydrogenases/reductases (SDRs). Eur. J. Biochem. 269:4409-4417. https://doi.org/10.1046/j.1432-1033.2002.03130.x
  19. Kallberg, Y. and Persson, B. 2006. Prediction of coenzyme specificity in dehydrogenases/reductases: a hidden Markov modelbased method and its application on complete genomes. FEBS J. 273:1177-1184. https://doi.org/10.1111/j.1742-4658.2006.05153.x
  20. Kim, S., Ahn, I. P., Rho, H. S. and Lee, Y. H. 2005. MHP1, a Magnaporthe grisea hydrophobin gene, is required for fungal development and plant colonization. Mol. Microbiol. 57:1224-1237. https://doi.org/10.1111/j.1365-2958.2005.04750.x
  21. Koga, H., Dohi, K., Nakayachi, O. and Mori, M. 2004. A novel inoculation method of Magnaporthe grisea for cytological observation of the infection process using intact leaf sheaths of rice plants. Physiol. Mol. Plant Pathol. 64:67-72. https://doi.org/10.1016/j.pmpp.2004.07.002
  22. Koh, Y. J. 1986. Adult-plant resistance of rice cultivars to blast. Ph.D. thesis. Seoul National University, Suwon, Korea.
  23. Lee, S. C. and Lee, Y. H. 1998. Calcium/calmodulin-dependent signaling for appressorium formation in the plant pathogenic fungus Magnaporthe grisea. Mol. Cells 8:698-704.
  24. Lee, Y. H. and Dean, R. A. 1993. cAMP regulates infection structure formation in the plant-pathogenic fungus Magnaporthe grisea. Plant Cell 5:693-700. https://doi.org/10.1105/tpc.5.6.693
  25. Liu, Y. G. and Whittier, R. F. 1995. Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 25:674-681. https://doi.org/10.1016/0888-7543(95)80010-J
  26. Livak, K. J. and Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-\Delta}^{{\Delta}Ct}$ method. Methods 25:402-408. https://doi.org/10.1006/meth.2001.1262
  27. Millard, P. J., Roth, B. L., Thi, H. P., Yue, S. T. and Haugland, R. P. 1997. Development of the FUN-1 family of fluorescent probes for vacuole labeling and viability testing of yeasts. Appl. Environ. Microbiol. 63:2897-2905.
  28. Mitchell, T. K. and Dean, R. A. 1995. The cAMP-dependent protein kinase catalytic subunit is required for appressorium formation and pathogenesis by the rice blast pathogen Magnaporthe grisea. Plant Cell 7:1869-1878. https://doi.org/10.1105/tpc.7.11.1869
  29. Oppermann, U. C., Filling, C. and Jörnvall, H. 2001. Forms and functions of human SDR enzymes. Chem. Biol. Interact. 130-132:699-705. https://doi.org/10.1016/S0009-2797(00)00301-X
  30. Ou, S. H. 1985. Rice diseases. Surrey: Commonwealth Mycological Institute. pp. 97-184.
  31. Persson, B., Kallberg, Y., Bray, J. E., Bruford, E., Dellaporta, S. L., Favia, A. D., Duarte, R. G., Jornvall, H., Kavanagh, K. L., Kedishvili, N., Kisiela, M., Maser, E., Mindnich, R., Orchard, S., Penning, T. M., Thornton, J. M., Adamski, J. and Oppermann, U. 2009. The SDR (short-chain dehydrogenase/reductase and related enzymes) nomenclature initiative. Chem. Biol. Interact. 178:94-98. https://doi.org/10.1016/j.cbi.2008.10.040
  32. Rossmann, M. G. and Argos, P. 1978. The taxonomy of binding sites in proteins. Mol. Cell Biochem. 21:161-182.
  33. Sambrook, J., Fritsch, E. F. and Maniatis, T. 1989. Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory Press, New York, USA.
  34. Thompson, J. E., Basarab, G. S., Andersson, A., Lindqvist, Y. and Jordan, D. B. 1997. Trihydroxynaphthalene reductase from Magnaporthe grisea: realization of an active center inhibitor and elucidation of the kinetic mechanism. Biochemistry 36: 1852-1860. https://doi.org/10.1021/bi962355u
  35. Thompson, J. E., Fahnestock, S., Farrall, L., Liao, D. I., Valent, B. and Jordan, D. B. 2000. The second naphthol reductase of fungal melanin biosynthesis in Magnaporthe grisea: tetrahydroxynaphthalene reductase. J. Biol. Chem. 275:34867-34872. https://doi.org/10.1074/jbc.M006659200
  36. Tokousbalides, M. C. and Sisler, H. D. 1978. Effect of tricyclazole on growth and secondary metabolism in Pyricularia oryzae. Pestic. Biochem. Physiol. 8:26-32. https://doi.org/10.1016/0048-3575(78)90089-5
  37. Valent, B. 1990. Rice blast as a model system for plant pathology. Phytopathology 80:33-36. https://doi.org/10.1094/Phyto-80-33
  38. Villarroya, A., Juan, E., Egestad, B. and Jornvall, H. 1989. The primary structure of alcohol dehydrogenase from Drosophila lebanonensis. Extensive variation within insect ‘short-chain’ alcohol dehydrogenase lacking zinc. Eur. J. Biochem. 180:191-197. https://doi.org/10.1111/j.1432-1033.1989.tb14632.x
  39. Woloshuk, C. P., Sisler, H. D., Tokousbalides, M. C. and Dutky, S. R. 1980. Melanin biosynthesis in Pyricularia oryzae: site of tricyclazole inhibition and pathogenicity of melanin-deficient mutants. Pest Biochem. Physiol. 14:256-264. https://doi.org/10.1016/0048-3575(80)90032-2
  40. Woloshuk, C. P. and Sisler, H. D. 1982. Tricyclazole, pyroquilon, trachlorophthalide, PCBA, coumarin and related compounds inhibit melanization and epidermal penetration by Pyricularia oryzae. J. Pestic. Sci. 7:161-166. https://doi.org/10.1584/jpestics.7.161
  41. Xu, J. R. and Hamer, J. E. 1996. MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Genes Dev. 10:2696-2706. https://doi.org/10.1101/gad.10.21.2696
  42. Xu, J. R., Urban, M., Sweigard, J. A. and Hamer, J. E. 1997. The CPKA gene of Magnaporthe grisea is essential for appressorial penetration. Mol. Plant-Microbe Interact. 10:187-194. https://doi.org/10.1094/MPMI.1997.10.2.187
  43. Yu, J. H., Hamari, Z., Han, K. H., Seo, J. A., Reyes-Dominguez, Y. and Scazzocchio, C. 2004. Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet. Biol. 41:973-981.

Cited by

  1. The role of the Tra1p transcription factor of Magnaporthe oryzae in spore adhesion and pathogenic development vol.57, 2013, https://doi.org/10.1016/j.fgb.2013.05.008
  2. The PEX7-Mediated Peroxisomal Import System Is Required for Fungal Development and Pathogenicity in Magnaporthe oryzae vol.6, pp.12, 2011, https://doi.org/10.1371/journal.pone.0028220
  3. Condition-dependent co-regulation of genomic clusters of virulence factors in the grapevine trunk pathogenNeofusicoccum parvum 2016, https://doi.org/10.1111/mpp.12491
  4. Two conidiation-related Zn(II)2Cys6 transcription factor genes in the rice blast fungus vol.61, 2013, https://doi.org/10.1016/j.fgb.2013.10.004
  5. Proteome of the Nematode-Trapping Cells of the Fungus Monacrosporium haptotylum vol.79, pp.16, 2013, https://doi.org/10.1128/AEM.01390-13
  6. In silico Prediction, Characterization, Molecular Docking, and Dynamic Studies on Fungal SDRs as Novel Targets for Searching Potential Fungicides Against Fusarium Wilt in Tomato vol.9, pp.1663-9812, 2018, https://doi.org/10.3389/fphar.2018.01038