DOI QR코드

DOI QR Code

Characteristics of 14-3-3 Proteins and Their Role in Plant Immunity

  • Received : 2009.01.18
  • Accepted : 2010.02.21
  • Published : 2010.03.01

Abstract

Phosphorylation is a major post-translational modification of proteins that regulate diverse signal transduction pathways in eukaryotic cells. 14-3-3 proteins are regulatory proteins that bind to target proteins in a phosphorylation-dependent manner and have been shown to play an important role in plant growth and development, primary metabolism, and signal transduction. Because phosphorylation plays a critical role in signal transduction pathways to trigger plant immunity, involvement of 14-3-3 proteins in plant immunity has been suggested for a long time. Recent studies have provided new evidence to support a role for 14-3-3 proteins in plant immunity. This review will briefly discuss general characteristics of 14-3-3 proteins and their involvement in plant immunity.

Keywords

References

  1. Asai, T., Tena, G., Plotnikova, J., Willmann, M. R., Chiu, W. L., Gomez-Gomez, L., Boller, T., Ausubel, F. M. and Sheen, J. 2002. MAP kinase signaling cascade in Arabidopsis innate immunity. Nature 415:977-983. https://doi.org/10.1038/415977a
  2. Bai, M. Y., Zhang, L. Y., Gampala, S. S., Zhu, S. W., Song, W. Y., Chong, K. and Wang, Z.Y. 2007. Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice. Proc. Natl. Acad. Sci. USA 104:13839-13844. https://doi.org/10.1073/pnas.0706386104
  3. Bogdanove, A. J. and Martin, G. B. 2000. AvrPto-dependent Ptointeracting proteins and AvrPto-interacting proteins in tomato. Proc. Natl. Acad. Sci. USA 97:8836-8840. https://doi.org/10.1073/pnas.97.16.8836
  4. Bridges, D. and Moorhead, G. B. G. 2005. 14-3-3 proteins: a number of functions for a numbered protein. Sci. STKE re10:2-10.
  5. Chang, I. F., Curran, A., Woolsey, R., Quilici, D., Cushman, J. C., Mittler, R., Harmon, A. and Harper, J. F. 2009. Proteomic profiling of tandem affinity purified 14-3-3 protein complexes in Arabidopsis thaliana. Proteomics 9:1-19. https://doi.org/10.1002/pmic.200890093
  6. Chaudhri, M., Scarabel, M. and Aitken, A. 2003. Mammalian and yeast 14-3-3 isoforms form distinct patterns of dimers in vivo. Biochem. Biophys. Res. Commun. 300:679-685. https://doi.org/10.1016/S0006-291X(02)02902-9
  7. Chen, F., Li, Q., Sun, L. and He, Z. 2006. The rice 14-3-3 gene family and its involvement in responses to biotic and abiotic stress. DNA Res. 13:53-63. https://doi.org/10.1093/dnares/dsl001
  8. Chevalier, D., Morris, E. R. and Walker, J. C. 2009. 14-3-3 and FHA domains mediate phosphorylation interactions. Ann. Rev. Plant Biol. 60:67-91. https://doi.org/10.1146/annurev.arplant.59.032607.092844
  9. Chisholm, S. T., Coaker, G., Day, B. and Staskawicz, B. J. 2006. Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124:803-814. https://doi.org/10.1016/j.cell.2006.02.008
  10. Darling, D. L., Yingling, J. and Wynshaw-Boris, A. 2005. Role of 14-3-3 proteins in eukaryotic signaling and development. Curr. Top. Dev. Biol. 68:281-315. https://doi.org/10.1016/S0070-2153(05)68010-6
  11. del Pozo, O., Pedley, K. F. and Martin, G. B. 2004. MAPKKKa is a positive regulator of cell death associated with both plant immunity and disease. EMBO J. 23:3072-3082. https://doi.org/10.1038/sj.emboj.7600283
  12. Devarenne, T. P., Ekengren, S. K., Pedley, K. F. and Martin, G. B. 2006. Adi3 is a Pdk1-interacting AGC kinase that negatively regulates plant cell death. EMBO J. 25:255-265. https://doi.org/10.1038/sj.emboj.7600910
  13. Ferl, R. J. 2004. 14-3-3 proteins: regulation of signal-induced events. Physiologia plantarum 120:173-178. https://doi.org/10.1111/j.0031-9317.2004.0239.x
  14. Ferl, R. J., Manak, M. S. and Reyes, M. F. 2002. The 14-3-3s. Genome Biol. 3:reviews3010.3011-3010.3017.
  15. Finnie, C., Anderson, C. H., Borch, J., Gjetting, S., Christensen, A. B., de Boer, A. H., Thordal-Christensen, H. and Collinge, D. B. 2002. Do 14-3-3 proteins and plasma membrane H+-ATPases interact in the barley epidermis in response to the barley powdery mildew fungus?. Plant Mol. Biol. 49:137-147. https://doi.org/10.1023/A:1014938417267
  16. Hammond-Kosack, K. E. and Parker, J. E. 2003. Deciphering plant-pathogen communication: fresh perspectives for molecular resistance breeding. Curr. Opin. Biotechnol. 14:177-193. https://doi.org/10.1016/S0958-1669(03)00035-1
  17. Jones, J. D. and Dangl, J. L. 2006. The plant immune system. Nature 444:323-329. https://doi.org/10.1038/nature05286
  18. Kim, J. G., Li, X., Roden, J. A., Taylor, K. W., Askre, C. D., Su, B., Lalonde, S., Kirik, A., Chen, Y., Baranage, G., McLane, H., Martin, G. B. and Mudgett, M. B. 2009. Xanthomonas T3S effector XopN suppresses PAMP-triggered immunity and interacts with a tomato atypical receptor-like kinase and TFT1. Plant Cell 21:1305-1323. https://doi.org/10.1105/tpc.108.063123
  19. Kim, Y. J., Lin, N.-C. and Martin, G. B. 2002. Two distinct Pseudomonas effector proteins interact with the Pto kinase and activate plant immunity. Cell 109:589-598. https://doi.org/10.1016/S0092-8674(02)00743-2
  20. Lancien, M. and Roberts, M. R. 2006. Regulation of Arabidopsis thaliana 14-3-3 gene expression by r-aminobutyric acid. Plant Cell Environ. 29:1430-1436. https://doi.org/10.1111/j.1365-3040.2006.01526.x
  21. Lu, D., Wu, S., Gao, X., Zhang, Y., Shan, L. and He, P. 2010. A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity. Proc. Natl. Acad. Sci. USA 107:496-501. https://doi.org/10.1073/pnas.0909705107
  22. Morrison, D. K. 2009. The 14-3-3 proteins: integrators of diverse signaling cues that impact cell fate and cancer development. Trends Cell Biol. 19:16-23. https://doi.org/10.1016/j.tcb.2008.10.003
  23. Nomura, K., Debroy, S., Lee, Y. H., Pumplin, N., Jones, J. and He, S. Y. 2006. A bacterial virulence protein suppresses host innate immunity to cause plant disease. Science 313:220-223. https://doi.org/10.1126/science.1129523
  24. Oh, C.-S., Pedley, K. F. and Martin, G. B. 2010. Tomato 14-3-3 protein 7 positively regulates immunity-associated programmed cell death by enhancing protein abundance and signaling ability of MAPKKKa. Plant Cell (In press).
  25. Ottmann, C., Marco, S., Jaspert, N., Marcon, C., Schauer, N., Weyand, M., Vandrmeeren, C., Duby, G., Boutry, M., Wittinghofer, A., Rigaud, J. and Oecking, C. 2007. Structure of a 14-3-3 coordinated hexamer of the plant plasma membrane H+-ATPase by combining X-ray crystallography and electron cryomicroscopy. Mol. Cell 25:427-440. https://doi.org/10.1016/j.molcel.2006.12.017
  26. Pedley, K. F. and Martin, G. B. 2005. Role of mitogen-activated protein kinases in plant immunity. Curr. Opin. Plant Biol. 8:541-547. https://doi.org/10.1016/j.pbi.2005.07.006
  27. Rienties, I. M., Vink, J., Borst, J. W., E. Russinova and de Vries, S. C. 2005. The Arabidopsis SERK1 protein interacts with the AAA-ATPase AtCDC48, the 14-3-3 protein GF14 lambda and the PP2C phosphatase KAPP. Planta 221:394-405. https://doi.org/10.1007/s00425-004-1447-7
  28. Roberts, M. R. 2003. 14-3-3 proteins find new partners in plant cell signaling. Trends Plant Sci. 8:218-223. https://doi.org/10.1016/S1360-1385(03)00056-6
  29. Roberts, M. R. and Bowles, D. J. 1999. Fusicoccin, 14-3-3 proteins, and defense responses in tomato plants. Plant Physiol. 119:1243-1250. https://doi.org/10.1104/pp.119.4.1243
  30. Roberts, M. R., Salinas, J. and Collinge, D. B. 2002. 14-3-3 proteins and the response to abiotic and biotic stress. Plant Mol. Biol. 50:1031-1039. https://doi.org/10.1023/A:1021261614491
  31. Schoonheim, P. J., Veiga, H., Pereira, D., Friso, G., van Wijk, K. J. and de Boer, A. H. 2007. A comprehensive analysis of the 14-3-3 interactome in barley leaves using a complementary proteomics and two-hybrid approach. Plant Physiol. 143:670-683. https://doi.org/10.1104/pp.106.090159
  32. Seehaus, K. and Tenhaken, R. 1998. Cloning of genes by mRNA differential display induced during the hypersensitive reaction of soybean after inoculation with Pseudomonas syringae pv. glycinea Plant Mol. Biol. 38:1225-1234. https://doi.org/10.1023/A:1006036827841
  33. Sehnke, P. C., DeLille, J. M. and Ferl, R. J. 2002. Consummating signal transduction: the role of 14-3-3 proteins in the completion of signal-induced transitions in protein activity. Plant Cell 14:339-354. https://doi.org/10.1105/tpc.010430
  34. Tang, X., Frederick, R. D., Zhou, J., Halterman, D. A., Jia, Y. and Martin, G. B. 1996. Initiation of plant disease resistance by physical interaction of AvrPto and Pto kinase. Science 274:2060-2063. https://doi.org/10.1126/science.274.5295.2060
  35. van Doorn, W. G. and Woltering, E. J. 2005. Many ways to exit? Cell death categories in plants. Trends Plant Sci. 10:117-122. https://doi.org/10.1016/j.tplants.2005.01.006
  36. Xing, W., Zou, Y., Liu, Q., Liu, J., Luo, X., Huang, Q., Chen, S., Zhu, L., Bi, R., Hao, Q., Wu, J.-W., Zhou, J.-M. and Chai, J. 2007. The structural basis for activation of plant immunity by bacterial effector protein AvrPto. Nature 449:243-247. https://doi.org/10.1038/nature06109
  37. Yaffe, M. B. 2002. How do 14-3-3 proteins work? - Gatekeeper phosphorylation and the molecular anvil hypothesis. FEBS Lett. 513:53-57. https://doi.org/10.1016/S0014-5793(01)03288-4
  38. Yan, J., Wang, J. and Zhang, H. 2002. An ankyrin repeat-containing protein plays a role in both disease resistance and antioxidation metabolism. Plant J. 29:193-202. https://doi.org/10.1046/j.0960-7412.2001.01205.x
  39. Yang, X., Wang, W., Coleman, M., Orgil, U., Feng, J., Ma, X., Ferl, R. J., Turner, J. G. and Xiao, S. 2009. Arabidopsis 14-3-3 lambda is a positive regulator of RPW8-mediated disease resistance. Plant J. 60:539-550. https://doi.org/10.1111/j.1365-313X.2009.03978.x
  40. Yang, X. Y., Lee, W. H., Sobott, F., Papagrigoriou, E., Robinson, C. V., Grossmann, G., Sundstrom, M., Doyle, D. A. and Elkins, J. M. 2006. Structural basis for protein-protein interactions in the 14-3-3 protein family. Proc. Natl. Acad. Sci. USA 103:17237-17242. https://doi.org/10.1073/pnas.0605779103
  41. Zhou, J.-M., Loh, Y.-T., Bressan, R. A. and Martin, G. B. 1995. The tomato gene Pti1 encodes a serine-threonine kinase that is phosphorylated by Pto and is involved in the hypersensitive response. Cell 83:925-935. https://doi.org/10.1016/0092-8674(95)90208-2
  42. Zipfel, C. 2008. Pattern-recognition receptors in plant innate immunity. Current opinion in immunology 20:10-16. https://doi.org/10.1016/j.coi.2007.11.003

Cited by

  1. Characterization of ubiquitin ligase SlATL31 and proteomic analysis of 14-3-3 targets in tomato fruit tissue ( Solanum lycopersicum L.) vol.143, 2016, https://doi.org/10.1016/j.jprot.2016.04.016
  2. Tomato TFT1 Is Required for PAMP-Triggered Immunity and Mutations that Prevent T3S Effector XopN from Binding to TFT1 Attenuate Xanthomonas Virulence vol.8, pp.6, 2012, https://doi.org/10.1371/journal.ppat.1002768
  3. Tomato 14-3-3 Protein TFT7 Interacts with a MAP Kinase Kinase to Regulate Immunity-associated Programmed Cell Death Mediated by Diverse Disease Resistance Proteins vol.286, pp.16, 2011, https://doi.org/10.1074/jbc.M111.225086
  4. Lens culinaris Medik. seed proteome: Analysis to identify landrace markers vol.197, 2012, https://doi.org/10.1016/j.plantsci.2012.08.010
  5. Rice 14-3-3 protein (GF14e) negatively affects cell death and disease resistance vol.68, pp.5, 2011, https://doi.org/10.1111/j.1365-313X.2011.04728.x
  6. Expression of the maize ZmGF14-6 gene in rice confers tolerance to drought stress while enhancing susceptibility to pathogen infection vol.63, pp.2, 2012, https://doi.org/10.1093/jxb/err328
  7. Xanthomonas euvesicatoriatype III effector XopQ interacts with tomato and pepper 14-3-3 isoforms to suppress effector-triggered immunity vol.77, pp.2, 2014, https://doi.org/10.1111/tpj.12391
  8. Identification of somatic embryogenesis (SE) related proteins through label-free shotgun proteomic method and cellular role in Catharanthus roseus (L.) G. Don pp.1573-5044, 2019, https://doi.org/10.1007/s11240-019-01563-0