DOI QR코드

DOI QR Code

The Small GTPase CsRAC1 Is Important for Fungal Development and Pepper Anthracnose in Colletotrichum scovillei

  • Lee, Noh-Hyun (Division of Bio-Resource Sciences, BioHerb Research Institute, and Interdisciplinary Program in Smart Agriculture, Kangwon National University) ;
  • Fu, Teng (Division of Bio-Resource Sciences, BioHerb Research Institute, and Interdisciplinary Program in Smart Agriculture, Kangwon National University) ;
  • Shin, Jong-Hwan (Division of Bio-Resource Sciences, BioHerb Research Institute, and Interdisciplinary Program in Smart Agriculture, Kangwon National University) ;
  • Song, Yong-Won (Division of Bio-Resource Sciences, BioHerb Research Institute, and Interdisciplinary Program in Smart Agriculture, Kangwon National University) ;
  • Jang, Dong-Cheol (Department of Horticulture, Kangwon National University) ;
  • Kim, Kyoung Su (Division of Bio-Resource Sciences, BioHerb Research Institute, and Interdisciplinary Program in Smart Agriculture, Kangwon National University)
  • Received : 2021.09.09
  • Accepted : 2021.10.31
  • Published : 2021.12.01

Abstract

The pepper anthracnose fungus, Colletotrichum scovillei, causes severe losses of pepper fruit production in the tropical and temperate zones. RAC1 is a highly conserved small GTP-binding protein in the Rho GT-Pase family. This protein has been demonstrated to play a role in fungal development, and pathogenicity in several plant pathogenic fungi. However, the functional roles of RAC1 are not characterized in C. scovillei causing anthracnose on pepper fruits. Here, we generated a deletion mutant (𝜟Csrac1) via homologous recombination to investigate the functional roles of CsRAC1. The 𝜟Csrac1 showed pleiotropic defects in fungal growth and developments, including vegetative growth, conidiogenesis, conidial germination and appressorium formation, compared to wild-type. Although 𝜟Csrac1 was able to develop appressoria, it failed to differentiate appressorium pegs. However, 𝜟Csrac1 still caused anthracnose disease with significantly reduced rate on wounded pepper fruits. Further analyses revealed that 𝜟Csrac1 was defective in tolerance to oxidative stress and suppression of host-defense genes. Taken together, our results suggest that CsRAC1 plays essential roles in fungal development and pathogenicity in C. scovilleipepper fruit pathosystem.

Keywords

Acknowledgement

This study was supported by a research grant of Kangwon National University in 2018.

References

  1. Ali, A., Bordoh, P. K., Singh, A., Siddiqui, Y. and Droby, S. 2016. Post-harvest development of anthracnose in pepper (Capsicum spp): etiology and management strategies. Crop Prot. 90:132-141. https://doi.org/10.1016/j.cropro.2016.07.026
  2. Barthelmes, K., Ramcke, E., Kang, H.-S., Sattler, M. and Itzen, A. 2020. Conformational control of small GTPases by AMPylation. Proc. Natl. Acad. Sci. U. S. A. 117:5772-5781. https://doi.org/10.1073/pnas.1917549117
  3. Caires, N. P., Pinho, D. B., Souza, J., Silva, M. A., Lisboa, D. O., Pereira, O. L. and Furtado, G. Q. 2014. First report of anthracnose on pepper fruit caused by Colletotrichum scovillei in Brazil. Plant Dis. 98:1437.
  4. Cannon, P. F., Damm, U., Johnston, P. R. and Weir, B. S. 2012. Colletotrichum: current status and future directions. Stud. Mycol. 73:181-213. https://doi.org/10.3114/sim0014
  5. Chen, J., Zheng, W., Zheng, S., Zhang, D., Sang, W., Chen, X., Li, G., Lu, G. and Wang, Z. 2008. Rac1 is required for pathogenicity and Chm1-dependent conidiogenesis in rice fungal pathogen Magnaporthe grisea. PLoS Pathog. 4:e1000202. https://doi.org/10.1371/journal.ppat.1000202
  6. Cherfils, J. and Zeghouf, M. 2013. Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol. Rev. 93:269-309. https://doi.org/10.1152/physrev.00003.2012
  7. Choi, J., Kim, Y., Kim, S., Park, J. and Lee, Y.-H. 2009. MoCRZ1, a gene encoding a calcineurin-responsive transcription factor, regulates fungal growth and pathogenicity of Magnaporthe oryzae. Fungal Genet. Biol. 46:243-254. https://doi.org/10.1016/j.fgb.2008.11.010
  8. Egan, M. J., Wang, Z.-Y., Jones, M. A., Smirnoff, N. and Talbot, N. J. 2007. Generation of reactive oxygen species by fungal NADPH oxidases is required for rice blast disease. Proc. Natl. Acad. Sci. U. S. A. 104:11772-11777. https://doi.org/10.1073/pnas.0700574104
  9. Food and Agriculture Organization of the United Nations. 2021. FAOSTAT. URL http://www.fao.org/faostat/en/#data/QC/visualize [3 November 2021].
  10. Fu, T., Han, J.-H., Shin, J.-H., Song, H., Ko, J., Lee, Y.-H., Kim, K.-T. and Kim, K. S. 2021. Homeobox transcription factors are required for fungal development and the suppression of host defense mechanisms in the Colletotrichum scovilleipepper pathosystem. mBio 12:e0162021. https://doi.org/10.1128/mBio.01620-21
  11. Fu, T., Kim, J.-O., Han, J.-H., Gumilang, A., Lee, Y.-H. and Kim, K. S. 2018. A small GTPase RHO2 plays an important role in pre-infection development in the rice blast pathogen Magnaporthe oryzae. Plant Pathol. J. 34:470-479. https://doi.org/10.5423/PPJ.OA.04.2018.0069
  12. Fu, T., Park, G.-C., Han, J. H., Shin, J.-H., Park, H.-H. and Kim, K. S. 2019. MoRBP9 encoding a ran-binding protein microtubule-organizing center is required for asexual reproduction and infection in the rice blast pathogen Magnaporthe oryzae. Plant Pathol. J. 35:564-574. https://doi.org/10.5423/PPJ.OA.07.2019.0204
  13. Gan, P., Ikeda, K., Irieda, H., Narusaka, M., O'Connell, R. J., Narusaka, Y., Takano, Y., Kubo, Y. and Shirasu, K. 2013. Comparative genomic and transcriptomic analyses reveal the hemibiotrophic stage shift of Colletotrichum fungi. New Phytol. 197:1236-1249. https://doi.org/10.1111/nph.12085
  14. Giacomin, R. M., de Fatima Ruas, C., Moreira, A. F. P., Guidone, G. H. M., Baba, V. Y., Rodrigues, R. and Goncalves, L. S. A. 2020. Inheritance of anthracnose resistance (Colletotrichum scovillei) in ripe and unripe Capsicum annuum fruits. J. Phytopathol. 168:184-192. https://doi.org/10.1111/jph.12880
  15. Gong, T., Liao, Y., He, F., Yang, Y., Yang, D.-D., Chen, X.-D. and Gao, X.-D. 2013. Control of polarized growth by the Rho family GTPase Rho4 in budding yeast: requirement of the N-terminal extension of Rho4 and regulation by the Rho GTPase-activating protein Bem2. Eukaryot. Cell 12:368-377. https://doi.org/10.1128/EC.00277-12
  16. Han, J.-H., Chon, J.-K., Ahn, J.-H., Choi, I.-Y., Lee, Y.-H. and Kim, K. S. 2016. Whole genome sequence and genome annotation of Colletotrichum acutatum, causal agent of anthracnose in pepper plants in South Korea. Genom. Data 8:45-46. https://doi.org/10.1016/j.gdata.2016.03.007
  17. Han, J.-H., Lee, H.-M., Shin, J.-H., Lee, Y.-H. and Kim, K. S. 2015. Role of the MoYAK1 protein kinase gene in Magnaporthe oryzae development and pathogenicity. Environ. Microbiol. 17:4672-4689. https://doi.org/10.1111/1462-2920.13010
  18. Han, J.-H., Shin, J.-H., Lee, Y.-H. and Kim, K. S. 2018. Distinct roles of the YPEL gene family in development and pathogenicity in the ascomycete fungus Magnaporthe oryzae. Sci. Rep. 8:14461. https://doi.org/10.1038/s41598-018-32633-6
  19. Harris, S. D. 2011. Cdc42/Rho GTPases in fungi: variations on a common theme. Mol. Microbiol. 79:1123-1127. https://doi.org/10.1111/j.1365-2958.2010.07525.x
  20. Irieda, H., Inoue, Y., Mori, M., Yamada, K., Oshikawa, Y., Saitoh, H., Uemura, A., Terauchi, R., Kitakura, S., Kosaka, A., Singkaravanit-Ogawa, S. and Takano, Y. 2019. Conserved fungal effector suppresses PAMP-triggered immunity by targeting plant immune kinases. Proc. Natl. Acad. Sci. U. S. A. 116:496-505. https://doi.org/10.1073/pnas.1807297116
  21. Jung, H. W. and Hwang, B. K. 2007. The leucine-rich repeat (LRR) protein, CaLRR1, interacts with the hypersensitive induced reaction (HIR) protein, CaHIR1, and suppresses cell death induced by the CaHIR1 protein. Mol. Plant Pathol. 8:503-514. https://doi.org/10.1111/j.1364-3703.2007.00410.x
  22. Karnoub, A. E., Symons, M., Campbell, S. L. and Der, C. J. 2004. Molecular basis for Rho GTPase signaling specificity. Breast Cancer Res. Treat. 84:61-71. https://doi.org/10.1023/B:BREA.0000018427.84929.5c
  23. Khalimi, K., Darmadi, A. A. K. and Suprapta, D. N. 2019. First report on the prevalence of Colletotrichum scovillei associated with anthracnose on chili pepper in Bali, Indonesia. Int. J. Agric. Biol. 22:363-368.
  24. Kim, D. S. and Hwang, B. K. 2014. An important role of the pepper phenylalanine ammonia-lyase gene (PAL1) in salicylic acid-dependent signalling of the defence response to microbial pathogens. J. Exp. Bot. 65:2295-2306. https://doi.org/10.1093/jxb/eru109
  25. Kim, S., Park, M., Yeom, S.-I., Kim, Y.-M., Lee, J. M., Lee, H.-A., Seo, E., Choi, J., Cheong, K., Kim, K.-T., Jung, K., Lee, G.-W., Oh, S.-K., Bae, C., Kim, S.-B., Lee, H.-Y., Kim, S.-Y., Kim, M.-S., Kang, B.-C., Jo, Y. D., Yang, H.-B., Jeong, H.-J., Kang, W.-H., Kwon, J.-K., Shin, C., Lim, J. Y., Park, J. H., Huh, J. H., Kim, J.-S., Kim, B.-D., Cohen, O., Paran, I., Suh, M. C., Lee, S. B., Kim, Y.-K., Shin, Y., Noh, S.-J., Park, J., Seo, Y.-S., Kwon, S.-Y., Kim, H. A., Park, J. M., Kim, H.-J., Choi, S.-B., Bosland, P. W., Reeves, G., Jo, S.-H., Lee, B.-W., Cho, H.-T., Choi, H.-S., Lee, M.-S., Yu, Y., Choi, Y. D., Park, B.-S., van Deynze, A., Ashrafi, H., Hill, T., Kim, W. T., Pai, H.-S., Ahn, H. K., Yeam, I., Giovannoni, J. J., Rose, J. K. C., Sorensen, I., Lee, S.-J., Kim, R. W., Choi, I.-Y., Choi, B.-S., Lim, J.-S., Lee, Y.-H. and Choi, D. 2014. Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat. Genet. 46:270-278. https://doi.org/10.1038/ng.2877
  26. Liao, C.-Y., Chen, M.-Y., Chen, Y.-K., Kuo, K.-C., Chung, K.-R. and Lee, M.-H. 2012. Formation of highly branched hyphae by Colletotrichum acutatum within the fruit cuticles of Capsicum spp. Plant Pathol. 61:262-270. https://doi.org/10.1111/j.1365-3059.2011.02523.x
  27. Mahlert, M., Leveleki, L., Hlubek, A., Sandrock, B. and Bolker, M. 2006. Rac1 and Cdc42 regulate hyphal growth and cytokinesis in the dimorphic fungus Ustilago maydis. Mol. Microbiol. 59:567-578. https://doi.org/10.1111/j.1365-2958.2005.04952.x
  28. Moldovan, L., Irani, K., Moldovan, N. I., Finkel, T. and Goldschmidt-Clermont, P. J. 1999. The actin cytoskeleton reorganization induced by Rac1 requires the production of superoxide. Antioxid. Redox Signal. 1:29-43. https://doi.org/10.1089/ars.1999.1.1-29
  29. Nesher, I., Minz, A., Kokkelink, L., Tudzynski, P. and Sharon, A. 2011. Regulation of pathogenic spore germination by CgRac1 in the fungal plant pathogen Colletotrichum gloeosporioides. Eukaryot. Cell 10:1122-1130. https://doi.org/10.1128/EC.00321-10
  30. O'Connell, R. J., Thon, M. R., Hacquard, S., Amyotte, S. G., Kleemann, J., Torres, M. F., Damm, U., Buiate, E. A., Epstein, L., Alkan, N., Altmuller, J., Alvarado-Balderrama, L., Bauser, C. A., Becker, C., Birren, B. W., Chen, Z., Choi, J., Crouch, J. A., Duvick, J. P., Farman, M. A., Gan, P., Heiman, D., Henrissat, B., Howard, R. J., Kabbage, M., Koch, C., Kracher, B., Kubo, Y., Law, A. D., Lebrun, M.-H., Lee, Y.-H., Miyare, I., Moore, N., Neumann, U., Nordstrom, K., Panaccione, D. G., Panstruga, R., Place, M., Proctor, R. H., Prusky, D., Rech, G., Reinhardt, R., Rollins, J. A., Rounsley, S., Schardl, C. L., Schwartz, D. C., Shenoy, N., Shirasu, K., Sikhakolli, U. R., Stuber, K., Sukno, S. A., Sweigard, J. A., Takano, Y., Takahara, H., Trail, F., van der Does, H. C., Voll, L. M., Will, I., Young, S., Zeng, Q., Zhang, J., Zhou, S., Dichman, M. B., Schulze-Lefert, P., Ver Loren van Themaat, E., Ma, L. J. and Vaillancourt, L. J. 2012. Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nat. Genet. 44:1060-1065. https://doi.org/10.1038/ng.2372
  31. Oo, M. M., Lim, G., Jang, H. A. and Oh, S.-K. 2017. Characterization and pathogenicity of new record of anthracnose on various chili varieties caused by Colletotrichum scovillei in Korea. Mycobiology 45:184-191. https://doi.org/10.5941/MYCO.2017.45.3.184
  32. Oo, M. M. and Oh, S.-K. 2016. Chilli anthracnose (Colletotrichum spp.) disease and its management approach. Korean J. Agric. Sci. 43:153-162. https://doi.org/10.7744/KJOAS.20160018
  33. Peres, N. A., Timmer, L. W., Adaskaveg, J. E. and Correll, J. C. 2005. Lifestyles of Colletotrichum acutatum. Plant Dis. 89:784-796. https://doi.org/10.1094/pd-89-0784
  34. Robinson, N. G. G., Guo, L., Imai, J., Toh-e, A., Matsui, Y. and Tamanoi, F. 1999. Rho3 of Saccharomyces cerevisiae, which regulates the actin cytoskeleton and exocytosis, is a GTPase which interacts with Myo2 and Exo70. Mol. Cell. Biol. 19:3580-3587. https://doi.org/10.1128/mcb.19.5.3580
  35. Rolke, Y. and Tudzynski, P. 2008. The small GTPase Rac and the p21-activated kinase Cla4 in Claviceps purpurea: interaction and impact on polarity, development and pathogenicity. Mol. Microbiol. 68:405-423. https://doi.org/10.1111/j.1365-2958.2008.06159.x
  36. Ryder, L. S., Dagdas, Y. F., Mentlak, T. A., Kershaw, M. J., Thornton, C. R., Schuster, M., Chen, J., Wang, Z. and Talbot, N. J. 2013. NADPH oxidases regulate septin-mediated cytoskeletal remodeling during plant infection by the rice blast fungus. Proc. Natl. Acad. Sci. U. S. A. 110:3179-3184. https://doi.org/10.1073/pnas.1217470110
  37. Schmidt, A., Bickle, M., Beck, T. and Hall, M. N. 1997. The yeast phosphatidylinositol kinase homolog TOR2 activates RHO1 and RHO2 via the exchange factor ROM2. Cell 88:531-542. https://doi.org/10.1016/S0092-8674(00)81893-0
  38. Segal, L. M. and Wilson, R. A. 2018. Reactive oxygen species metabolism and plant-fungal interactions. Fungal Genet. Biol. 110:1-9. https://doi.org/10.1016/j.fgb.2017.12.003
  39. Shin, J.-H., Han, J.-H., Park, H.-H., Fu, T. and Kim, K. S. 2019. Optimization of polyethylene glycol-mediated transformation of the pepper anthracnose pathogen Colletotrichum scovillei to develop an applied genomics approach. Plant Pathol. J. 35:575-584. https://doi.org/10.5423/PPJ.OA.06.2019.0171
  40. Smithers, C. C. and Overduin, M. 2016. Structural mechanisms and drug discovery prospects of Rho GTPases. Cells 5:26. https://doi.org/10.3390/cells5020026
  41. Tian, H., Zhou, L., Guo, W. and Wang, X. 2015. Small GTPase Rac1 and its interaction partner Cla4 regulate polarized growth and pathogenicity in Verticillium dahliae. Fungal Genet. Biol. 74:21-31. https://doi.org/10.1016/j.fgb.2014.11.003
  42. Toporek, S. M. and Keinath, A. P. 2020. First report of Colletotrichum scovillei causing anthracnose fruit rot on pepper in South Carolina, United States. Plant Dis. 105:1222. https://doi.org/10.1094/PDIS-08-20-1656-PDN
  43. Van Aelst, L. and D'Souza-Schorey, C. 1997. Rho GTPases and signaling networks. Genes Dev. 11:2295-2322. https://doi.org/10.1101/gad.11.18.2295
  44. Virag, A., Lee, M. P., Si, H. and Harris, S. D. 2007. Regulation of hyphal morphogenesis by cdc42 and rac1 homologues in Aspergillus nidulans. Mol. Microbiol. 66:1579-1596. https://doi.org/10.1111/j.1365-2958.2007.06021.x
  45. Yoshida, S., Bartolini, S. and Pellman, D. 2009. Mechanisms for concentrating Rho1 during cytokinesis. Genes Dev. 23:810-823. https://doi.org/10.1101/gad.1785209
  46. Yu, J.-H., Hamari, Z., Han, K.-H., Seo, J.-A., Reyes-Dominguez, Y. and Scazzocchio, C. 2004. Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet. Biol. 41:973-981. https://doi.org/10.1016/j.fgb.2004.08.001