• 제목/요약/키워드: conductor

검색결과 2,177건 처리시간 0.029초

전자장 해석 프로그램을 이용한 와전류 문제의 해석 및 이해 (Analysis and Understanding of Eddy Current Problem using electromagnetic field Packeg)

  • 임건규;이향범
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 A
    • /
    • pp.571-572
    • /
    • 2006
  • When the coil with alternating current approaches to the conductor the eddy current flows in conductor. Eddy current is concentrated on the conductor surface and decrescent because of skin effet.. In this paper investigated eddy current characteristic that is happened in conductor. Analyzed characteristic using electromagnetic field finite element analysis program that is commercialized to analyze value of eddy current and penetration depth. Analyzed creation value of eddy current and penetration depth in conductor that change operation frequency and the material of conductor, coil outside diameter, inside diameter, position, type of conductor from analyzed eddy current characteristic. The results, using distribution of eddy current and penetration depth data is that will help to forecast ECT(Eddy Current Testing), Eddy current application and use field, eddy current loss.

  • PDF

ITER TF 초전도 도체 개발과 특성 (Development of ITER TF Cable-in-Conduit Conductors and Their Characteristics)

  • 김형찬;오동근;박수현;김기만
    • Progress in Superconductivity
    • /
    • 제10권2호
    • /
    • pp.108-115
    • /
    • 2009
  • As a participant taking part in the ITER TF conductor R&D program, we developed two toroidal field conductors with variations of conduit thickness resulting in the different void fraction of the conductors. The estimated void fractions of the conductors are 31% and 33%. In this paper we present the details of the TF conductor development and performance test results of them carried out by the measurement of current sharing temperature under cyclic loading. Regarding the conductor development, the internal-Sn-processed $Nb_3Sn$ strand characteristics, strand cabling, twist pitch and characteristics of the conduit materials are presented. For the understanding of the conductor design and performance, the conductor test results are presented and the effect of the conductor design parameters such as void fraction and twist pitch is discussed based on the results.

  • PDF

Describing Function Method를 이용한 송전선의 전선도약(Galloping)현상 해석에 관한 연구 (The Analysis of Power Line Galloping by Describing Function Method)

  • 노창주;박한석;변기식
    • 대한전기학회논문지
    • /
    • 제41권4호
    • /
    • pp.339-345
    • /
    • 1992
  • Estimates of maximum amplitudes of conductor galloping are needed in order to determine appropriate phase-to-phase clearances on the overhead lines. One approach to obtaining these estimates is through the use of mathematical models of conductor galloping. Unfortunately, the models that consider both vertical conductor motion (Den Hartog type) and torsional conductor motion are often too complex for practical use. However, the estimates of maximum amplitude obtained from galloping models that assume only vertical (Den Hartog type) conductor motion tend to be too conservative. This paper presents the DF method to obtain the estimates of the amplitude and the frequency of galloping limit cycle, along with the wind pressure at which they occur, from a nonlinear dynamic model that considers both Den Hartog type and torsional conductor motion. From these results, the useful data for the line design guide and further insight into the mechanism of the conductor galloping are obtained.

  • PDF

전자장 해석 프로그램을 이용한 와전류 문제의 해석 및 이해 (Analysis and Understanding of Eddy Current Problem using electromagnetic field Packeg)

  • 임건규;이향범
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.1237-1238
    • /
    • 2006
  • When the coil with alternating current approaches to the conductor the eddy current flows in conductor. Eddy current is concentrated on the conductor surface and decrescent because of skin effet.. In this paper investigated eddy current characteristic that is happened in conductor. Analyzed characteristic using electromagnetic field finite element analysis program that is commercialized to analyze value of eddy current and penetration depth. Analyzed creation value of eddy current and penetration depth in conductor that change operation frequency and the material of conductor, coil outside diameter, inside diameter, position, type of conductor from analyzed eddy current characteristic. The results. using distribution of eddy current and penetration depth data is that will help to forecast ECT(Eddy Current Testing), Eddy current application and use field, eddy current loss.

  • PDF

장력과 풍속이 ACSR 가공송전선의 온도에 미치는 영향 (Effect of Tension and Wind Velocity on Temperature of ACSR Overhead Conductor)

  • 김상수;김병걸;이동일;민병욱
    • 한국전기전자재료학회논문지
    • /
    • 제19권5호
    • /
    • pp.480-485
    • /
    • 2006
  • A research was undertaken on the thermal properties and behavior of the conductors in a controlled chamber, which was designed to implement the outdoor air temperature, heat and wind conditions With ACSR $410mm^2$ overhead conductors, we measured the maximum temperature of the conductors and the temperature gradient from the core to the surface regions as a function of current, tension, wind velocity and outdoor air temperature. This test also provided a comparative analysis between the measured temperature values of conductors in the controlled chamber and the theoretical calculations of ANSI/IEEE at normal condition. There was not much influence of tension on the conductor temperature. However, the compactness of conductor wires increased with an increase in tension, which eventually increased the coefficient of effective thermal conductivity and, accordingly the conductor temperature was reduced more or less.

전자장 해석 프로그램을 이용한 와전류 문제의 해석 및 이해 (Analysis and Understanding of Eddy Current Problem using electromagnetic field Packeg)

  • 임건규;이향범
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 C
    • /
    • pp.1697-1698
    • /
    • 2006
  • When the coil with alternating current approaches to the conductor the eddy current flows in conductor. Eddy current is concentrated on the conductor surface and decrescent because of skin effect. In this paper investigated eddy current characteristic that is happened in conductor. Analyzed characteristic using electromagnetic field finite element analysis program that is commercialized to analyze value of eddy current and penetration depth. Analyzed creation value of eddy current and penetration depth in conductor that change operation frequency and the material of conductor, coil outside diameter, inside diameter, position, type of conductor from analyzed eddy current characteristic. The results, using distribution of eddy current and penetration depth data is that will help to forecast ECT(Eddy Current Testing), Eddy current application and use field, eddy current loss.

  • PDF

VIV simulation of riser-conductor systems including nonlinear soil-structure interactions

  • Ye, Maokun;Chen, Hamn-Ching
    • Ocean Systems Engineering
    • /
    • 제9권3호
    • /
    • pp.241-259
    • /
    • 2019
  • This paper presents a fully three-dimensional numerical approach for analyzing deepwater drilling riser-conductor system vortex-induced vibrations (VIV) including nonlinear soil-structure interactions (SSI). The drilling riser-conductor system is modeled as a tensioned beam with linearly distributed tension and is solved by a fully implicit discretization scheme. The fluid field around the riser-conductor system is obtained by Finite-Analytic Navier-Stokes (FANS) code, which numerically solves the unsteady Navier-Stokes equations. The SSI is considered by modeling the lateral soil resistance force according to nonlinear p-y curves. Overset grid method is adopted to mesh the fluid domain. A partitioned fluid-structure interaction (FSI) method is achieved by communication between the fluid solver and riser motion solver. A riser-conductor system VIV simulation without SSI is firstly presented and served as a benchmark case for the subsequent simulations. Two SSI models based on a nonlinear p-y curve are then applied to the VIV simulations. Also, the effects of two key soil properties on the VIV simulations of riser-conductor systems are studied.

765kV 송전선로용 저풍소음 복도체 방식의 코로나 특성 모의실험 (Simulation on the Corona Characteristics of Low Aeolian Noise Conductor Bundles for 765 kV Transmission Line)

  • 주문노;양광호;신구용;이동일;민석원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 A
    • /
    • pp.131-133
    • /
    • 2000
  • Single phase simulations were carried out in order to determine a solutive conductor to the aeolian noise which will be locally applied to 765 kV transmission lines Basic solutive conductors have already been proposed including conductors equipped with spiral rod. low noise conductor of a special shape and others. A low aeolian noise conductor, however, should have excellent corona characteristics in addition to aeolian noise reduction function. In this paper, we compared the performances of the audible noises and radio interferences of 6 candidate conductor bundles by using corona cage. We also developed two programs to need for evaluating environmental effects of each conductor bundle. Those are a program to calculate the conductor surface gradient of various special bundles and a conversion program of single phase data to the model of transmission line. The future determination on the final low aeolian noise conductor will be made through a long-term test to verify environmental impacts at the full-scale Kochang 765 kV test line.

  • PDF

2도체 송전선로의 스페이서 취부방식 연구 (A Study on the Spacer Installation Method for 2-Conductor Bundle Transmission Lines)

  • 민병욱;김우겸;최한열;박기용;김원진;박재웅
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.333-334
    • /
    • 2008
  • Overhead transmission lines are classified by the number of sub conductors per phase. Korean transmission lines use two, four, or six-conductor bundle. Bundle of conductors must have spacers or spacer dampers which keep the proper distance between sub conductors. They can prevent conductors from being vibrated or twisted due to the wind. As for the two-conductor bundle, alternating current flow generates absorption force between sub conductors which may cause a collision of sub conductors. To prevent sub conductors from being vibrated, twisted, and collided, spacer or spacer damper installation method is designed considering vibration characteristics of sub conductors. We have spacer installation method for four or six-conductor bundle lines. However, we don't have it for two-conductor bundle ones. So we have installed spacers at regular intervals in two-conductor bundle lines, and it caused rigid body oscillation of conductors due to the wind which made a flashover between conductors. This paper introduces a vibration characteristic analysis of two-conductor bundle and proposes a spacer installation method for two-conductor bundle lines.

  • PDF

마이크로파 가변 소자용 K-band Coplanar Stripline 공진기 설계 (K-band Coplanar Stripline Resonator for Microwave Tunable Devices)

  • 강종윤;윤석진;김현재
    • 한국전기전자재료학회논문지
    • /
    • 제18권6호
    • /
    • pp.532-537
    • /
    • 2005
  • In order to develop a tunable resonator which can be easily operated by DC bias and applied for microwave tunable filters and devices using ferroelectric thin or thick films, the non conductor backed-and conductor backed- coplanar stripline resonators have been designed and analyzed. They have been designed to be operated at 25 GHz which involve coplanar stripline input and output ports. The resonators have been simulated and analyzed using Ansoft HFSS. The research has been focused on the Quality factor of the coplanar stripline resonator. The conductor Q, box Q, and radiation Q of the resonators have been analyzed and calculated according to the substrate thickness & conductor width of the resonators. From these parameters, the loss factors of the coplanar stripline resonator have been investigated. The conducting Q of the coplanar stripline resonator has no relation with the thickness of dielectric substrate and increases as the conductor width increases. The box Q has no much relation with the thickness of substrate and the conductor width, which is above 2000. The radiation loss increases as the thickness of substrate and the conductor width increase. To decrease the radiation loss of the coplanar stripline resonator, a conductor backed coplanar stripline resonator has been proposed which has the unloaded Q of 170.