• Title/Summary/Keyword: conductive environment

Search Result 109, Processing Time 0.031 seconds

High Temperature Reliability Study of Anisotropic Conductive Adhesive for Electronic Components

  • Woo, Eun-Ju;Moon, Yu-Sung;Kim, Jung-Won
    • Journal of IKEEE
    • /
    • v.22 no.1
    • /
    • pp.193-196
    • /
    • 2018
  • In this study, we investigated the reliability of anisotropic conductive paste (ACP) and anisotropic conductive films (ACF), which are anisotropic conductive adhesives, applied to automotive touch panels. Adhesive material is also important as a key factor in assembling the touch panel. In order to measure the resistance change of the parts in two kinds of high temperature test, the reliability of the two types of anisotropic conductive adhesives was compared and evaluated through the results of the resistance change. For 615 hours of reliability testing, the anisotropic conductive film exhibited a higher stability in a high temperature environment than the anisotropic conductive paste.

Evaluation of DC Resistive Humidity Sensors Based on Conductive Carbon Ink (전도성 카본 잉크를 이용한 직류 저항형 습도센서 제작 및 평가)

  • An, Taechang
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.397-401
    • /
    • 2017
  • A DC resistance type humidity sensor using conductive carbon ink was fabricated and its performance was evaluated. The humidity sensor was fabricated using a screen printing technique and have a structure that does not require additional metal electrodes to measure resistance change. To evaluate the performance of the humidity sensor, we measured the DC resistance change under various relative humidity levels. The fabricated humidity sensor showed a resistance change of about $2.5{\sim}50k{\Omega}$ in 11 ~ 95% RH environment. It also shows a linear relationship in the relative humidity versus log DC resistance graph. In comparison with commercial humidity sensor under real environment, it can be confirmed that the resistance of the humidity sensor changes to almost the same level as the measured humidity. These results show that the resistance type humidity sensor can be operated stably in actual environment.

Investigation of Relation between EFTB Test and RF Conductive Immunity Test Using BER and Baseband Signal

  • Kuwabara, Nobuo;Irie, Yasuhiro;Hirasawa, Norihito;Akiyama, Yoshiharu
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.4
    • /
    • pp.274-281
    • /
    • 2011
  • High-speed telecommunication systems are influenced by electromagnetic environments because they need a wide bandwidth to transmit signals. Immunity tests of telecommunication equipment are effective for improving its immunity to electromagnetic environments. However, immunity tests are expensive to carry out because there are several different tests. The correlation among the tests should therefore be examined in order to reduce the kinds of tests that are necessary. This paper investigates the correlation between the electrical fast transient/burst (EFTB) test and the radio frequency (RF) conductive immunity test. Imitation equipment was constructed with a balun, and a baseband signal was transmitted from the associated equipment to the imitation equipment. Then, disturbances were applied to the equipment, and the telecommunication quality was evaluated by using the bit error rate (BER). The results from the EFTB test indicated that the BER was less than $6{\times}10^{-5}$ and the value was independent of the peak value. The results from the RF conductive immunity test indicated that the BER was affected by the longitudinal conversion loss (LCL).

Ratio of Elemental Carbon Concentrations for Respective Measurement Locations according to the Sampler (샘플러에 따른 측정 위치별 원소탄소의 농도 비율)

  • Cha, Won-Seok;Kim, Eun-Young;Choi, Sung-Won;Choi, Soo-Yeon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.31 no.4
    • /
    • pp.461-472
    • /
    • 2021
  • Objectives: This study was conducted to determine the differences in EC concentrations according to the type of sampler by measuring and analyzing EC. Methods: Elemental carbon was measured in diesel engine vehicles and at the roadside. Using NIOSH method 5040, a cassette was coupled to 37 mm and 27 mm quartz filters and measurements were performed 21 times. There were 14 types of measurement methods, and polystyrene, polypropylene, and metal samplers were evenly placed inside the movable chamber. Results: The results measured using the 37 mm conductive cassette (closed/open) and the IOM sampler made of conductive materials showed a higher ratio than the other results. When the 37 mm conductive cassette was measured with the lid open, it showed a statistically significantly higher ratio than with other measurement methods (p<0.05). Conclusions: Checking the EC concentration a total of 21 times at each ratio based on the concentration of the 3-stage polystyrene cassette, it was statistically significantly higher when the 37 mm conductive cassette was open. This same cassette also showed a slightly higher EC concentration when closed. It was ascertained that some DEE was collected on the cassette wall surface due to the electrical conductivity of the polystyrene cassette, resulting in sample loss. Since EC is composed of fine particles, it is thought that electrical conductivity may affect its concentration.

Effect of the crude oil environment on the electrical conductivity of the epoxy nanocomposites

  • Seyed Morteza Razavi;Soroush Azhdari;Fathollah Taheri-Behrooz
    • Advances in nano research
    • /
    • v.15 no.4
    • /
    • pp.285-294
    • /
    • 2023
  • This study is aimed to investigate the electrically conductive properties of epoxy nanocomposites exposed to an acidic environment under various mechanical loads. For simultaneous assessment of the acidic environment and mechanical load on the electrical conductivity of the samples, the samples with and without carbon nanotubes were exposed to the acidic environment under three different loading conditions for 20 days. Then, the aged samples' strength and flexural stiffness degradation under crude oil and bending stress were measured using a three-point flexural test. The aged samples in the acidic environment and under 80 percent of their intact ultimate strength revealed a 9% and 26% reduction of their electrical conductivity for samples with and without CNTs, respectively. The presence of nanoparticles declined flexural stiffness by about 16.39%. Scanning electron microscopy (SEM) images of the specimen were used to evaluate the dispersion quality of CNTs. The results of this study can be exploited in constructing conductive composite electrodes to be used in petroleum environments such as crude oil electrostatic tanks.

Effect of nonlocal-nonsingular Fractional Moore-Gibson-Thompson theory in semiconductor cylinder

  • Iqbal Kaur;Kulvinder Singh
    • Advances in nano research
    • /
    • v.15 no.4
    • /
    • pp.305-313
    • /
    • 2023
  • This study is aimed to investigate the electrically conductive properties of epoxy nanocomposites exposed to an acidic environment under various mechanical loads. For simultaneous assessment of the acidic environment and mechanical load on the electrical conductivity of the samples, the samples with and without carbon nanotubes were exposed to the acidic environment under three different loading conditions for 20 days. Then, the aged samples' strength and flexural stiffness degradation under crude oil and bending stress were measured using a three-point flexural test. The aged samples in the acidic environment and under 80 percent of their intact ultimate strength revealed a 9% and 26% reduction of their electrical conductivity for samples with and without CNTs, respectively. The presence of nanoparticles declined flexural stiffness by about 16.39%. Scanning electron microscopy (SEM) images of the specimen were used to evaluate the dispersion quality of CNTs. The results of this study can be exploited in constructing conductive composite electrodes to be used in petroleum environments such as crude oil electrostatic tanks.

Performance of Conductive Gloves When Using Electronic Devices in a Cold Environment - Manual Dexterity, Usability and Thermoregulatory Responses - (겨울철 전자 기기 사용을 위한 전도성 보온장갑의 착용성 평가 - 손의 기민성과 사용성, 체온조절 반응을 중심으로 -)

  • Kwon, JuYoun;Jung, Dahee;Kim, Siyeon;Jeong, Wonyoung;Lee, Joo-Young
    • Fashion & Textile Research Journal
    • /
    • v.22 no.5
    • /
    • pp.686-695
    • /
    • 2020
  • The present study evaluated the manual dexterity and usability of conductive gloves when operating touchscreen devices in the cold. Twelve male subjects (23.3±1.5 years in age) participated in three experimental conditions: no gloves, fabric conductive and lambskin conductive gloves. Manual dexterity was tested using both Purdue Pegboard (PP) and ASTM dexterity tests at an air temperature of 5℃ and air humidity of 30%RH. Glove usability was tested through the following touchscreen tests: tap, double tap, long tab, drag, flick, and multi-touch. The results showed that manual dexterity according to the PP (2.5 mm of a pin diameter) and ASTM tests (8 mm of a stick diameter) was worse for the two glove conditions than for the no glove condition (p<.005). PP dexterity was better for the fabric glove condition than for the lambskin glove condition (p<.05); however, there was no difference in ASTM dexterity between the two glove conditions. Hand and finger skin temperatures were higher for the glove conditions than the bare hand condition (p<.05), with no differences between the two glove conditions. The touchscreen usability was the best for the no glove condition, followed by fabric gloves (p<.05). Wearing either fabric or lambskin gloves diminishes hand dexterity while maintaining hand and finger temperatures at higher levels. For improved hand dexterity in dealing with small numbers, letters on a touchscreen in cold environments, we recommend wearing fabric conductive gloves rather than lambskin conductive gloves.

Pilot Test of Electrocardiogram Measurement Method for Conductive Textiles Electrode Position in Bed Condition (침대 형태에서 기능성 직물 전도성 전극 위치에 대한 심전도 측정 방법의 Pilot Test)

  • Jun won, Choi;Lina A., Asante;Chang Hyun, Song;Halim, Chung;Han Sung, Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.80-84
    • /
    • 2023
  • Electrodes are one of the types of biosensors capable of measuring bio signals, such as electrocardiogram (ECG) and electromyogram (EMG) signals. These electrodes are used in various fields and offer the advantage of being able to measure ECG signals without the need for skin attachment, compared to Ag/AgCl electrodes. The purpose of this study was to evaluate the efficacy of conductive textile electrodes in collecting ECG signals in a bed-like environment. Three adult participants were involved, and a total of 30 minutes of ECG signals were collected for each participant. The collected ECG signals were analyzed to determine the heart rate, normLF and a comparison was made between the conductive textile electrodes and Ag/AgCl electrodes. As a result, the change in heart rate and normLF could be observed, and in particular, the difference between the two electrodes decreased. This study confirmed that conductive textile electrodes can effectively collect ECG signals in a bed-like environment. It is hoped that this research will lead to the development of a system that can detect various sleep-related diseases through the use of these electrodes.

Study on Thermal Conductive PV(PhotoVoltaic) Backsheet using MgO Masterbatch with High Thermal Conductivity (고열전도도 MgO를 이용한 열전도성 PV(PhotoVoltaic) 백시트의 연구)

  • Kim, Chang-Hee;Jang, Hyun-Tae;Park, Jong-Se;Yoon, Jong-Kuk;Noh, Eun-Seob;Park, Ji-Soo;Koo, Kyung-Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.3
    • /
    • pp.448-453
    • /
    • 2018
  • PV module protective film plays an important role in protecting the solar cell from external environment by anti-hydrolysis polyester, UV resistance and mechanical properties. The backsheet was manufactured by using Roll-to-Roll dry laminating process. The backsheet structure is composed of 3 layers, which are PE, PET, and Fluorine polymer films. In this study, we have experimented the variation of thermal conductivities depending on MgO inputs 10% to 25% in order to confirm the dependence of the module efficiencies. High thermal conductive backsheet can increase the module output power efficiency because the heat is dissipated by spreading out the internal heat. Long-term environment weatherability tests were conducted for confirming 25 year reliability in the field such as PCT, UV, and power efficiency degradations. As the evaluation result, high thermal conductivity can be effective for increase of power efficiency of solar panel by using thermal conductive MgO masterbatch.