DOI QR코드

DOI QR Code

Performance of Conductive Gloves When Using Electronic Devices in a Cold Environment - Manual Dexterity, Usability and Thermoregulatory Responses -

겨울철 전자 기기 사용을 위한 전도성 보온장갑의 착용성 평가 - 손의 기민성과 사용성, 체온조절 반응을 중심으로 -

  • Kwon, JuYoun (Research Institute of Human Ecology, Seoul National University) ;
  • Jung, Dahee ;
  • Kim, Siyeon (Dept. of Textiles, Merchandising and Fashion Design, Seoul National University) ;
  • Jeong, Wonyoung (Human Convergence Technology R&D Dept. Korea Institute of Industrial Technology) ;
  • Lee, Joo-Young (Research Institute of Human Ecology, Seoul National University)
  • 권주연 (서울대학교 생활과학연구소) ;
  • 정다희 (서울대학교 의류학과) ;
  • 김시연 (한국생산기술연구원 휴먼융합기술그룹) ;
  • 정원영 (한국생산기술연구원 휴먼융합기술그룹) ;
  • 이주영 (서울대학교 생활과학연구소)
  • Received : 2020.09.08
  • Accepted : 2020.10.09
  • Published : 2020.10.31

Abstract

The present study evaluated the manual dexterity and usability of conductive gloves when operating touchscreen devices in the cold. Twelve male subjects (23.3±1.5 years in age) participated in three experimental conditions: no gloves, fabric conductive and lambskin conductive gloves. Manual dexterity was tested using both Purdue Pegboard (PP) and ASTM dexterity tests at an air temperature of 5℃ and air humidity of 30%RH. Glove usability was tested through the following touchscreen tests: tap, double tap, long tab, drag, flick, and multi-touch. The results showed that manual dexterity according to the PP (2.5 mm of a pin diameter) and ASTM tests (8 mm of a stick diameter) was worse for the two glove conditions than for the no glove condition (p<.005). PP dexterity was better for the fabric glove condition than for the lambskin glove condition (p<.05); however, there was no difference in ASTM dexterity between the two glove conditions. Hand and finger skin temperatures were higher for the glove conditions than the bare hand condition (p<.05), with no differences between the two glove conditions. The touchscreen usability was the best for the no glove condition, followed by fabric gloves (p<.05). Wearing either fabric or lambskin gloves diminishes hand dexterity while maintaining hand and finger temperatures at higher levels. For improved hand dexterity in dealing with small numbers, letters on a touchscreen in cold environments, we recommend wearing fabric conductive gloves rather than lambskin conductive gloves.

Keywords

References

  1. Al-Megren, S. (2018). A predictive fingerstroke-level model for smartwatch interaction. Multimodal Technologies and Interaction, 2(3), 38. doi:10.3390/mti2030038
  2. Berger, M. A. M., Krul, A. J., & Daanen, H. A. M. (2009). Task specificity of finger dexterity tests. Applied Ergonomics, 40(1), 145-147. doi:10.1016/j.apergo.2008.01.014
  3. Choi, J. W. (2006). Study on parameters for prediction thermal insulation of clothing. National Research Foundation (NRF), Final Report, p177.
  4. Daanen, H. A. M. (2009). Manual performance deterioration in the cold estimated using the wind chill equivalent temperature. Industrial Health, 47(3), 262-270. doi:10.2486/indhealth.47.262
  5. Fukazawa, T., & Tochihara, Y. (2015). The thermal manikin; a useful and effective for evaluating human thermal environments. Journal of the Human-Environment System, 18(1), 21-28. doi:10.1618/jhes.18.021
  6. Havenith, G., Heus, R., & Daanen, H. A. (1995). The hand in the cold, performance and risk. Arctic Medical Research, 54(2), 37-47.
  7. Heus, R., Daanen, H. A. M., & Havenith, G. (1995). Physiological criteria for functioning of hands in the cold - A review. Applied Ergonomics, 26(1), 5-13. doi:10.1016/0003-6870(94)00004-I
  8. Hu, L., Pasta, M., Mantia, F., Cui, L., Jeong, S., Deshazer, H., & Cui, Y. (2010). Stretchable, porous, and conductive energy textiles. Nano Letters, 10(2), 708-714. doi:10.1021/nl903949m
  9. Irzmanska, E., Wojcik, P., & Adamus-Wlodarczyk, A. (2018). Manual work in cold environments and its impact on selection of materials for protective gloves based on workplace observations. Applied Ergonomics, 68, 186-196. doi:10.1016/j.apergo.2017.11.007
  10. ISO 9241-110. (2006). Ergonomics of human-system interaction - Part 110: Dialogue principals. International Standard Organization.
  11. Jun, H., Choi, W. & Pan, Y. (2008). A study on user behavior of input method for touch screen mobile phone. Proceedings of HCI Society of Korea, February, Korea, 2, pp. 1023-1028.
  12. Kim, B., Kincar, V., Devaux, E., Dufour, C., & Vilallier, P. (2004). Electrical and morphological properties of PP and PET conductive polymer fibers. Synthetic Metals, 146(2), 167-174. doi:10.1177/1528083719883048
  13. Kim, D. M., Kim, D. H., & Lee, J. Y. (2017). Wear comfort of firefighters protective gloves in dry and wet conditions at $70^{\circ}C$ air temperature with radiant heat. Journal of Korean Society of Living Environmental System, 24(1), 95-106. doi:10.21086/ksles.2017.02.24.1.95
  14. Kim, D. M., Lee, I. S., & Lee, J. Y. (2016). Mobility evaluation of popular firefighting protective gloves in domestic and foreign countries -Don-doff test, dexterity test, and torque test-. Journal of the Korean Society of Clothing and Textiles, 40(5), 921-935. doi:10.5850/JKSCT.2016.40.5.921
  15. Kim, H., Song, H. W., & Park, S. H. (2014). Proper response times and design factors influencing user satisfaction with diverse touch tap operations for the smartphone. Archives of Design Research, 27(2), 95-105. doi:10.15187/adr.2014.05.110.2.95
  16. Koo, H., & Janigo, K. (2017). Development of conductive gloves for touchscreen devices. International Journal of Fashion Design Technology and Education, 10(1), 71-80. doi:10.1080/17543266.2016.1194484
  17. KS K 0539. (1969). Test methods for stiffness of fabrics. Korean Standards Association.
  18. KS K ISO 5084. (1996). Textiles-Determination of thickness of textiles and textiles products. Korean Standards Association.
  19. Muller, M. D., Ryan, E. J., Bellar, D. M., Kim, C. H., Blankfield, R. P., Muller, S. M., & Glickman, E. L. (2010). The influence of interval versus continuous exercise on thermoregulation, torso hemodynamics, and finger dexterity in the cold. European Journal of Applied Physiology, 109(5), 857-867. doi:10.1007/s00421-010-1416-8
  20. Potter, A. W., Gonzalez, J. A., Carter, A. J., Looney, D. P., Rioux, T. P., Srinivasan, S., Sullivan-Kwantes, W., & Xu, X. (2018). Comparison of cold weather clothing biophysical properties: US army, Canadian department of national defence, and Norwegian military. U.S. Army Research Institute of Environmental Medicine, Technical report No. T18-02. Retrieved August 27, 2020, from https://apps.dtic.mil/dtic/tr/fulltext/u2/1051229.pdf
  21. Roda-Sales, A., Sancho-Bru, J., Vergara, M., Gracia-Ibanez, V., & Jarque-Bou, N. J. (2020). Effect on manual skills of wearing instrumented gloves during manipulation. Journal of Biomechanics, 98, 109512. doi:10.1016/j.jbiomech.2019.109512
  22. Sari, H., Gartner, M., Hoeft, A., & Candas, V. (2004). Glove thermal insulation: Local heat transfer measures and relevance. European Journal of Applied Physiology, 92(6), 702-705. doi:10.1007/s00421-004-1136-z
  23. Sawyer, J., & Bennett, A. (2006). Comparing the level of dexterity offered by latex and nitrile SafeSkin gloves. Annals of Occupational Hygiene, 50(3), 289-296. doi:10.1093/annhyg/mei066
  24. Stoppa, M., & Chiolerio, A. (2014). Wearable electronics and smart textiles - A critical review. Sensors, 14(7), 11957-11992. doi:10.3390/s140711957
  25. The American Society for Testing and Materials. (2010). Standard test method for evaluation of glove effects on wearer hand dexterity using a modified pegboard test (ASTM F2010). ASTM International, United States. Retrieved August 27, 2020, from http://www.astm.org/Standards/F2010.htm
  26. Tiffin, J., & Asher, E. J. (1948). The Purdue Pegboard: Norms and studies of reliability and validity. Journal of Applied Psychology, 32(3), 234-247. doi:10.1037/h0061266
  27. Watkins, S. M. (1995). Clothing: The portable environment. Iowa: Iowa State Press.
  28. Wegene, J. D., & Thanikaivelan, P. (2014). Conducting leathers for smart product applications. Industrial & Engineering Chemistry Research, 53(47), 18209-18215. doi:10.1021/ie503956p
  29. Woodson, W. E. (1987). Human factors reference guide for process plants. London: McGraw-Hill.