• Title/Summary/Keyword: conductive composites

Search Result 227, Processing Time 0.02 seconds

Preparation and Thermal Conductivity of Poly(organosiloxane) Rubber Composite with Low Hardness (저경도 Poly(organosiloxane) Rubber Composite의 제조와 열전도 특성)

  • Kang Doo Whan;Yeo Hak Gue
    • Polymer(Korea)
    • /
    • v.29 no.2
    • /
    • pp.161-165
    • /
    • 2005
  • $\alpha,\omega-Vinyl$ poly(dimethyl-methylphenyl) siloxane propelymer (VPMPS ) was prepared by the equilibrium polymerization of octamethylcyclotetrasiloxane $(D_4)$, 1,3,5-trimethyl-1,3,5-triphenylcyclotrisiloxane $(D_3^{MePh})$, and 1,1,3,3-tetramethyl-1,3-divinylsiloxane (MVS) as end-blocker. And also, $\alpha,\omega-hydrogen$ poly(dimethyl-methyltrifluoropropyl)siloxane prepolymer (HPDMFS) was prepared from $D_4$, 1,3,5-trimethyl-1,3.5-trifluoropropylcyclotrisiloxane $(D_3^{MeF3P})$, and 1,1,3,3-tetramethyldisiloxane. Poly(organosiloxane) rubber composite containing high thermal conductive filler was prepared by compounding VPMPS, HPDMFS, spherical alumina, and catalyst in high speed dissolver. The crosslinking density of poly (organosiloxane) composite was measured by oscillation rheometer. Poly(organosiloxane) composites of TC-POXR-2 and TC-POXR-4 prepared by controlling average diameters of thermal conductive filler, spherical alumina according to Horsfield's packing model were shown to 1.13 W/mK for TC-POXR-2 and 1.19 W/mK for TC-POXR-4.

Study on the Solvent Effect in the Coating of Conductive Polythiophene Derivative (용매에 따른 폴리싸이오펜 치환체의 전기전도성에 미치는 영향)

  • Pak, Na-Young;Lee, Seong-Min;Chung, Dae-Won
    • Elastomers and Composites
    • /
    • v.46 no.4
    • /
    • pp.290-294
    • /
    • 2011
  • The surface resistance of poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT/PSS), which has appeared to be one of the most successful conductive polymers, is affected by the solvent. In this paper, pellet-type PEDOT/PSS was suspended in $H_2O$, ethanol (EtOH), ethylene glycol (EG) or dimethylsulfoxide (DMSO), and coated on PET film. The surface resistances of the films made from EG or DMSO suspension were observed to be lower, nearly by 2 orders of magnitude, than that made from $H_2O$ suspension. No significant difference among four kinds of films was observed when the thermal properties and chemical structures were investigated by TGA and XPS, respectively. However, particle size of PEDOT/PSS was in the range of $1-3{\mu}m$ in EG or DMSO, on the other hand, less than $0.1{\mu}m$ in $H_2O$. It is considered that the particle size of PEDOT/PSS in the suspension plays an important role for the surface resistance.

Preparation and Characterization of Pitch-based Carbon Paper for Low Energy and High Efficiency Surface Heating Elements (저전력 및 고효율 면상발열체를 위한 피치기반 탄소종이 제조 및 특성)

  • Yang, Jae-Yeon;Yoon, Dong-Ho;Kim, Byoung-Suhk;Seo, Min-Kang
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.412-420
    • /
    • 2018
  • In this work, phenolic resins containing conductive carbon fillers, such as, petroleum coke, carbon black, and graphite, were used to improve the surface heating elements by impregnating a pitch-based carbon paper. The influence of conductive carbon fillers on physicochemical properties of the carbon paper was investigated through electrical resistance measurement and thermal analysis. As a result, the surface resistance and interfacial contact resistivity of the carbon paper were decreased linearly by impregnating the carbon fillers with phenol resins. The increase of carbon filler contents led to the improvement of electrical and thermal conductivity of the carbon paper. Also, the heating characteristics of the surface heating element were examined through the applied voltage of 1~5 V. With the applied voltage, it was confirmed that the surface heating element exhibited a maximum heating characteristic of about $125.01^{\circ}C$(5 V). These results were attributed to the formation of electrical networks by filled micropore between the carbon fibers, which led to the improvement of electrical and thermal properties of the carbon paper.

Effect of Non-Conducting Filler Additions on Anisotropic Conductive Adhesives(ACAs) Properties and the Reliability of ACAs Flip Chip on Organic Substrates (이방성 전도 접착제 물성과 유기 기판 플립 칩의 신뢰성에 미치는 비전도성 충진재의 영향)

  • Im, Myeong-Jin;Baek, Gyeong-Uk
    • Korean Journal of Materials Research
    • /
    • v.10 no.3
    • /
    • pp.184-190
    • /
    • 2000
  • We investigated the effect of filler content on the thermo-mechanical properties of modified ACA composite materials by incorporation of non-conducting fillers and the reliability of flip chip assembly on organic substrates using modified ACA composite materials. For the characterization of modified ACA s composites with different content of non-conducting fillers, differential scanning calorimeter (DSC), and thermo-gravimetric analyzer (TGA), dynamic mechanical analyzer (DMA), and thermo-mechnical analyzer (TMA) were utilized. As the non-conducting filler content increased, CTE values decreased and storage modulus at room temperature increased. In addition, the increase in the content of filler brought about the increase of Tg^{DSC}$ and $Tg^{TMA}$. However, the TGA behaviors stayed almost the same. Contact resistance changes were measured during reliability tests such as thermal cycling, high humidity and temperature, and high temperature at dry condition. It was observed that reliability results were significantly affected by CTEs of ACA materials especially at the thermal cycling test. Results showed that flip chip assembly using modified ACA composites with lower CTEs and higher modulus by loading non-conducting fillers exhibited better contact resistance behavior than conventional ACAs without non-conducting fillers.

  • PDF

Microstructure and EDM Processing of $MoSi_2$ Intermetallic Composite ($MoSi_2$ 금속간화합물 복합재료의 미세구조와 방전가공특성)

  • Yoon, Han-Ki;Lee, Sang-Pill;Yoon, Kyong-Wok;Kim, Dong-Hyun
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.23-28
    • /
    • 2002
  • This paper describes the machining characteristics of the $MoSi_2$ based composites by electric discharge drilling with various tubular electrodes, besides, Hardness characteristics and microstructures of $Nb/MoSi_2$ laminate composites were evaluated from the variation of fabricating conditions such as preparation temperature, applied pressure and pressure holding time. $MoSi_2$ -based composites has been developed in new materials for jet engine of supersonic-speed airplanes and gas turbine for high- temperature generator. Achieving this objective may require new hard materials with high strength and high temperature-resistance. However, With the exception of grinding, traditional machining methods are not applicable to these new materials. Electric discharge machining (EDM) is a thermal process that utilizes a spark discharge to melt a conductive material, the tool electrode being almost non-unloaded, because there is no direct contact between the tool electrode and the workpiece. By combining a nonconducting ceramics with more conducting ceramic it was possible to raise the electrical conductivity. From experimental results, it was found that the lamination from Nb sheet and $MoSi_2$ powder was an excellent strategy to improve hardness characteristics of monolithic $MoSi_2$. However, interfacial reaction products like (Nb, Mo)$SiO_2$ and $Nb_2Si_3$ formed at the interface of $Nb/MoSi_2$ and increased with fabricating temperature. $MoSi_2$ composites which a hole drilling was not possible by the conventional machining process, enhanced the capacity of ED-drilling by adding $NbSi_2$ relative to that of SiC or $ZrO_2$ reinforcements.

  • PDF

Preparation of Electrically Conductive Composites Filled with Nickel Powder and MWCNT Fillers (다중벽 탄소나노튜브와 니켈 분말을 포함하는 전도성 복합체 제조)

  • Kim, Sunghoon;Park, Seonghwan;Kwon, Jaebeom;Ha, KiRyong
    • Korean Chemical Engineering Research
    • /
    • v.54 no.3
    • /
    • pp.410-418
    • /
    • 2016
  • In this study, we prepared electrically conducting composites using epoxy resin of diglycidyl ether of bisphenol A (DGEBA) as a matrix, triethylenetetramine (TETA) as a hardener and nickel powder or multi-walled carbon nanotubes (MWCNTs) grafted with $-NH_2$ groups (MWCNT-$NH_2$) as electrically conducting fillers. Electrical conductivity of composite films were measured by coating on the slide glass with a doctor blade. We measured modification reactions of MWCNT and reaction of MWCNT-$NH_2$ with DGEBA epoxy resin by fourier transform infrared spectrometer (FTIR), thermogravimetric analyzer (TGA) and elemental analyzer (EA). Morphology of composites was investigated by scanning electron microscope (SEM) and sheet resistances of composites were measured by 4-point probe. We found $(9.87{\pm}1.09){\times}10^4{\Omega}/sq$ of sheet resistance for epoxy composite containing both 40 wt% nickel powder and 0.5 wt% of MWCNT-$NH_2$ as fillers, equivalent to epoxy composite containing 53.3 wt% nickel powder only as a filler.

The Effect of Graphene on the Electrical Properties of a Stretchable Carbon Electrode (그래핀 첨가에 따른 신축성 카본전극의 전기적 특성 변화)

  • Lee, T.W.;Park, H.H.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.4
    • /
    • pp.77-82
    • /
    • 2014
  • Stretchable electrodes are focused due to many demands for soft electronics. One of the candidates, carbon black composites have advantages of low cost, easy processing and decreasing resistivity in a certain range during stretching. However, the electrical conductivity of carbon black composites is not enough for electronic devices. Graphene is 2-dimensional nanostructured carbon based material which shows good electrical properties and flexibility. They may help to improve electrical conductivity of the carbon black composites. In this study, graphene was added to a carbon black electrode to enhance electrical properties and investigated. Electrical resistivity of graphene added carbon electrode decreased comparing with that of carbon black electrode because graphene bridged non-contacting carbon black aggregates to strengthen the conductive network. Also graphene reduced an increase in the resistance of the carbon black electrode applied to strain because they connected gap of separated carbon black aggregates and aligned along the stretching direction at the same time. In conclusion, an addition of graphene to carbon black gives two benefits on the electrical properties of carbon black composite as a stretchable electrode.

Surface Electrode Modification and Improved Actuation Performance of Soft Polymeric Actuator using Ionic Polymer-Metal Composites (이온성고분자-금속복합체를 이용한 유연고분자 구동체의 표면특성 개선과 구동성 향상)

  • Jung, Sunghee;Lee, Myoungjoon;Song, Jeomsik;Lee, Sukmin;Mun, Museoung
    • Applied Chemistry for Engineering
    • /
    • v.16 no.4
    • /
    • pp.527-532
    • /
    • 2005
  • Ionic polymer metal composites (IPMC) are soft polymeric smart materials having large displacement at low voltage in air and water. The polymeric electrolyte actuator consists of a thin and porous membrane and metal electrodes plated on both faces, in impregnation electro-plating method. The response and actuation of actuator are governed. Among many factors governing the activation and response of IPMC actuator, the surface electrode plays an important role. In this study, the well-designed modification of electrode surface was carried out in order to improve the chemical stability well as electromechanical characteristics of the IPMC actuator. We employed Ion Beam Assisted Deposition (IBAD) method to prepare the topologically homogeneous thin surface electrode. After roughing the surface of Nafion membrane in order to get a larger surface area, the IPMC was prepared by impregnation for electro-plating and re- coating on the surface through traditional chemical deposition, followed by an additional surface treatment with high conductive metals with IBAD. It was observed that our IPMC specimen shows the enhanced surface electrical properties as well as the improved actuation and response characteristics under applied electric field.

Thermal Diffusivity of PEEK/SiC and PEEK/CF Composites (PEEK/SiC와 PEEK/CF 복합재료의 열확산도에 대한 연구)

  • Kim, Sung-Ryong;Yim, Seung-Won;Kim, Dae-Hoon;Lee, Sang-Hyup;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.9 no.3
    • /
    • pp.7-13
    • /
    • 2008
  • The particulate type silicon carbide (SiC) and fiber type carbon fiber (CF) filler, of similar thermal conductivities, were mixed with polyetheretherketone (PEEK) to investigate the filler effects on the thermal diffusivity. The SiC and CF fillers had a good and uniform dispersion in PEEK matrix. Thermal diffusivities of PEEK composites were measured from ambient temperature up to $200^{\circ}C$ by laser flash method. The diffusivities were decreased as increasing temperature due to the phonon scattering between PEEK-filler and filler-filler interfaces. Thermal diffusivity of PEEK composites was increased with increasing filler content and the thermal conductivities of two-phase system were compared to the experimental results and it gave ideas on the filler dispersion, orientation, aspect ratio, and filler-filler interactions. Nielson equation gave a good prediction to the experimental results of PEEK/SiC. The easy network formation by CF was found to be substantially more effective than SiC and it gave a higher thermal diffusivities of PEEK/CF than PEEK/SiC.

  • PDF

Thermally Conductive Polymer Composites for Electric Vehicle Battery Housing (전기자동차 배터리 하우징용 열전도성 고분자 복합재료)

  • Yoon, Yeo-Seong;Jang, Min-Hyeok;Moon, Dong-Joon;Jang, Eun-jin;Oh, Mee-Hye;Park, Joo-Il
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.4
    • /
    • pp.331-337
    • /
    • 2022
  • Manufactured thermoplastic composite materials to replace the metal materials used as battery housing materials for electric vehicles with lightweight materials. As the matrix material, nylon 6 which is a polymer material was used. Boron Nitrate(BN), which has high thermal conductivity, was used to provide heat dissipation performance. The heat dissipation characteristics of the thermally conductive polymer composite material according to the BN content and particle size were analyzed. The thermal conductivity value increased as the filler content increased, and composite materials particle size of 60 to 70㎛ and BN content of 50%, the thermal conductivity was 1.4 W/mK. The larger the particle size, the wider the inter-particle interface contact surface, which means that a thermal path was formed. wider the interfacial contact surface between the particles, and the thermal path was formed. A battery housing was manufactured using the manufactured thermally conductive polymer composite material, and the temperature change during charging and discharging of the cell was observed, and the possibility as a substitute material for the battery housing was confirmed.