DOI QR코드

DOI QR Code

The Effect of Graphene on the Electrical Properties of a Stretchable Carbon Electrode

그래핀 첨가에 따른 신축성 카본전극의 전기적 특성 변화

  • Lee, T.W. (Department of Materials Science and Engineering, Yonsei University) ;
  • Park, H.H. (Department of Materials Science and Engineering, Yonsei University)
  • Received : 2014.11.28
  • Accepted : 2014.12.26
  • Published : 2014.12.30

Abstract

Stretchable electrodes are focused due to many demands for soft electronics. One of the candidates, carbon black composites have advantages of low cost, easy processing and decreasing resistivity in a certain range during stretching. However, the electrical conductivity of carbon black composites is not enough for electronic devices. Graphene is 2-dimensional nanostructured carbon based material which shows good electrical properties and flexibility. They may help to improve electrical conductivity of the carbon black composites. In this study, graphene was added to a carbon black electrode to enhance electrical properties and investigated. Electrical resistivity of graphene added carbon electrode decreased comparing with that of carbon black electrode because graphene bridged non-contacting carbon black aggregates to strengthen the conductive network. Also graphene reduced an increase in the resistance of the carbon black electrode applied to strain because they connected gap of separated carbon black aggregates and aligned along the stretching direction at the same time. In conclusion, an addition of graphene to carbon black gives two benefits on the electrical properties of carbon black composite as a stretchable electrode.

소프트 일렉트로닉스에 대한 많은 수요로 인해 신축성 전극이 주목 받고 있다. 그 후보 중 하나인 카본블랙 복합소재(composite)는 낮은 가격, 용이한 공정성뿐 만 아니라 특정 범위에서 인장에 따라 비저항이 감소하는 장점을 가지고 있다. 하지만 전자소자로 쓰이기엔 전기전도도가 좋지 못 한 단점을 가지고 있다. 그래핀은 2차원 나노구조의 카본 계열 물질로서 뛰어난 전기적 특성과 유연성을 가지고 있으며 그래핀의 첨가로 카본블랙 복합소재의 전도성을 향상시킬 것으로 예상된다. 본 연구에서는 그래핀을 카본블랙 전극에 첨가하여 강화된 전기적 특성을 조사하였다. 그래핀 첨가 카본전극의 전기저항률은 카본블랙 전극과 비교해 감소하였다. 이는 그래핀이 서로 접촉하지 않는 카본블랙 응집체를 연결하여 도전 구조를 강화하였기 때문이다. 또한 그래핀은 인장 시 나타나는 카본블랙 전극의 저항증가를 감소시켰다. 그 원인은 그래핀이 인장 시 멀어지는 카본블랙 응집체 간극을 연결함과 동시에 인장방향으로 정렬되기 때문이다. 결론적으로 그래핀 첨가는 카본블랙 복합소재의 전기적 특성을 향상시켜 신축성 전극으로서 2가지 효과를 부여한다.

Keywords

References

  1. J. Park, S. Wang, M. Li, C. Ahn, J. K. Hyun and D. S. Kim, "Three-dimensional nanonetworks for giant stretchability in dielectrics and conductors", Nat. Commun., 3, 916 (2012). https://doi.org/10.1038/ncomms1929
  2. J. -H. Kim, M. -W. Chon and S. -H. Choa, "Technology of Flexible Transparent Conductive Electrode for Flexible Electronic Devices", J. Microelectron. Packag. Soc., 21(2), 1 (2014). https://doi.org/10.6117/kmeps.2014.21.2.001
  3. B. -J. Kim, "Reliability of Metal Electrode for Flexible Electronics", J. Microelectron. Packag. Soc., 20(4), 1 (2013). https://doi.org/10.6117/kmeps.2013.20.4.001
  4. J. A. Rogers, T. Someya and Y. Huang, "Materials and Mechanics for Stretchable Electronics", Science, 327, 1603 (2010). https://doi.org/10.1126/science.1182383
  5. S. Rosset and H. R. Shea, "Flexible and stretchable electrodes for dielectric elastomer actuators", Appl. Phys. A, 110, 281 (2013). https://doi.org/10.1007/s00339-012-7402-8
  6. A. Chortos and Z. Bao, "Skin-inspired electronic devices", Mater. Today, 17, 321 (2014). https://doi.org/10.1016/j.mattod.2014.05.006
  7. W. M. Choi, J. Song, D. Y. Khang, H. Jiang, Y. Y. Huang and J. A. Rogers, "Biaxially Stretchable "Wavy" Silicon Nanomembranes", Nano Lett., 7, 1655 (2007). https://doi.org/10.1021/nl0706244
  8. J. Lee, J. Wu, M. Shi, J. Yoon, S. I. Park, M. Li, Z. Liu, Y. Huang and J. A. Rogers, "Stretchable GaAs Photovoltaics with Designs That Enable High Areal Coverage", Adv. Mater., 23, 986 (2011). https://doi.org/10.1002/adma.201003961
  9. D. -H. Kim, J. Song, W. M. Choi, H. -S. Kim, R. -H. Kim, Z. Liu, Y. Y. Huang, K. -C. Hwang, Y. Zhang and J. A. Rogers, "Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations", Proc. Natl. Acad. Sci. U. S. A., 105, 18675 (2008). https://doi.org/10.1073/pnas.0807476105
  10. P. Lee, J. Lee, H. Lee, J. Yeo, S. Hong, K. H. Nam, D. Lee, S. S. Lee and S. H. Ko, "Highly Stretchable and Highly Conductive Metal Electrode by Very Long Metal Nanowire Percolation Network", Adv. Mater., 24, 3326 (2012). https://doi.org/10.1002/adma.201200359
  11. T. A. Kim, H. S. Kim, S. S. Lee and M. Park, "Single-walled carbon nanotube/silicone rubber composites for compliant electrodes", Carbon, 50, 444 (2012). https://doi.org/10.1016/j.carbon.2011.08.070
  12. N. C. Das, T. K. Chaki and D. Khastgir, "Effect of axial stretching on electrical resistivity of short carbon fibre and carbon black filled conductive rubber composites", Polym. Int., 51, 156 (2002). https://doi.org/10.1002/pi.811
  13. L. Flandin, A. Hiltner and E. Baer, "Interrelationships between electrical and mechanical properties of a carbon black-filled ethylene-octene elastomer", Polymer, 42, 827 (2001). https://doi.org/10.1016/S0032-3861(00)00324-4
  14. Y. Sun, H. D. Bao, Z. X. Guo and J. Yu, "Modeling of the Electrical Percolation of Mixed Carbon Fillers in Polymer-Based Composites", Macromolecules, 42, 459 (2009). https://doi.org/10.1021/ma8023188
  15. T. W. Lee, Ch. S. Park and H. H. Park, "The effect of ball-milling on the dispersion of carbon nanotubes: the electrical conductivity of carbon nanotubes-incorporated ZnO", J. Ceram. Soc. Jpn., 122 (8), 1 (2014). https://doi.org/10.2109/jcersj2.122.1
  16. M. Wen, X. Sun, L. Su, J. Shen, J. Li and S. Guo, "The electrical conductivity of carbon nanotube/carbon black/polypropylene composites prepared through multistage stretching extrusion", Polymer, 53, 1602 (2012). https://doi.org/10.1016/j.polymer.2012.02.003
  17. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim and K. S. Kim, "Large-scale pattern growth of graphene films for stretchable transparent electrodes", Nature, 457, 706 (2009). https://doi.org/10.1038/nature07719
  18. L. Bokobza, M. Rahmani, C. Belin, J. L. Bruneel and N. E. Bounia, "Blends of carbon blacks and multiwall carbon nanotubes as reinforcing fillers for hydrocarbon rubbers", J. Polym. Sci. b Polym. Phys., 46, 1939 (2008). https://doi.org/10.1002/polb.21529
  19. A. K. Geim and K. S. Novoselov, "The rise of graphene", Nat. Mater., 6, 183 (2007). https://doi.org/10.1038/nmat1849
  20. S. P. Rwei, F. H. Ku and K. C. Cheng, "Dispersion of carbon black in a continuous phase: Electrical, rheological, and morphological studies", Colloid Polym. Sci., 280, 1110 (2002). https://doi.org/10.1007/s00396-002-0718-8
  21. K. Yamaguchi, J. J. C. Busfield and A. G. Thomas, "Electrical and mechanical behavior of filled elastomers. I. The effect of strain", J. Polym. Sci. b Polym. Phys., 41, 2079 (2003). https://doi.org/10.1002/polb.10571
  22. L. Flandin, A. Chang, S. Nazarenko, A. Hiltner and E. Baer, "Effect of strain on the properties of an ethylene-octene elastomer with conductive carbon fillers", J. Appl. Polym. Sci., 76, 894 (2000). https://doi.org/10.1002/(SICI)1097-4628(20000509)76:6<894::AID-APP16>3.0.CO;2-K
  23. Y. Fukahori and W. Seki, "Stress analysis of elastomeric materials at large extensions using the finite element method", J. Mater. Sci., 29, 2767 (1994). https://doi.org/10.1007/BF00356831

Cited by

  1. Past and Present Research Topics within the Korean Micoelectronics and Packaging Using Social Network Analysis vol.22, pp.3, 2015, https://doi.org/10.6117/kmeps.2015.22.3.009
  2. A Study on the Electrical Resistivity of Graphene Added Carbon Black Composite Electrode with Tensile Strain vol.22, pp.1, 2015, https://doi.org/10.6117/kmeps.2015.22.1.055
  3. 이온교환법에 의한 환원 그래핀-금속 하이브리드 소재의 합성 및 특성 vol.27, pp.4, 2014, https://doi.org/10.6117/kmeps.2020.27.4.025
  4. 주석산화물 에어로겔의 Graphene Oxide 첨가에 따른 광촉매적 Rhodamine B 분해 vol.28, pp.1, 2021, https://doi.org/10.6117/kmeps.2021.28.1.061
  5. 금속/그래핀 이중 구조 와이어의 합성 및 전기적 특성 연구 vol.28, pp.1, 2014, https://doi.org/10.6117/kmeps.2021.28.1.067
  6. Large-Scale Rapid Laser Sintering of Highly Stretchable Electrodes Using a Homogenized Rectangular Laser Beam vol.21, pp.5, 2014, https://doi.org/10.1166/jnn.2021.19135