• Title/Summary/Keyword: conduction model

Search Result 523, Processing Time 0.032 seconds

The Electrical Insulation Characteristics of HTS SMES (초고온초전도 SMES의 절연특성)

  • Cheon, Hyeon-Gweon;Choi, Jae-Hyeong;Kim, Hae-Jong;Seong, Ki-Chul;Kim, Sang-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.623-626
    • /
    • 2005
  • Toward the practical applications, on operation of conduction-cooled HTS SMES at temperatures well below 77 K should be investigated, in order to take advantage of a greater critical current density of HTS and considerably reduce the size and weight of the system. Recently, research and development concerning application of the conduction-cooled HTS SMES that is easily movement are actively progressing in Korea. Electrical insulation under cryogenic temperature is a key and an important element in the application of this apparatus. Using multi wrapped copper by polyimide film for HIS SMES, the breakdown characteristics of models for turn-to-turn, that is surface contact model, were investigated under ac and impulse voltage at 77 K. A material that is Polyimide film (Kapton) 0.025 mm thickness is used for multi wrapping of the electrode. Statistical analysis of the results using Weibull distribution to examine the wrapping number effects on breakdown voltage under ac and impulse voltage in $LN_2$ was carried.

  • PDF

Band alignment and optical properties of $(ZrO_2)_{0.66}(HfO_2)_{0.34}$ gate dielectrics thin films on p-Si (100)

  • Tahir, D.;Kim, K.R.;Son, L.S.;Choi, E.H.;Oh, S.K.;Kang, H.J.;Heo, S.;Chung, J.G.;Lee, J.C.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.381-381
    • /
    • 2010
  • $(ZrO_2)_{0.66}(HfO_2)_{0.34}$ thin films as gate dielectrics have been proposed to overcome the problems of tunneling current and degradation mobility inachieving a thin equivalent oxide thickness. An extremely thin $SiO_2$ layer is used in order to separate the carrier in MOSFET channel from the dielectric field fluctuation caused by phonons in the dielectric which decreases the carrier mobility. The electronic and optical properties influenced the device performance to a great extent. $(ZrO_2)_{0.66}(HfO_2)_{0.34}$ dielectric films on p-Si (100) were grown by atomic layer deposition method, for which the conduction band offsets, valence band offsets and band gapswere obtained by using X-ray photoelectron spectroscopy and reflection electron energy loss spectroscopy. The band gap, valence and conduction band offset values for $(ZrO_2)_{0.66}(HfO_2)_{0.34}$ dielectric thin film, grown on Si substrate were about 5.34, 2.35 and 1.87 eV respectively. This band alignment was similar to that of $ZrO_2$. In addition, The dielectric function (k, $\omega$), index of refraction n and the extinction coefficient k for the $(ZrO_2)_{0.66}(HfO_2)_{0.34}$ thin films were obtained from a quantitative analysis of REELS data by comparison to detailed dielectric response model calculations using the QUEELS-$\varepsilon$(k, $\omega$)-REELS software package. These optical properties are similar with $ZrO_2$ dielectric thin films.

  • PDF

Numerical Analysis of Laboratory Heating Experiment on Granite Specimen (화강암의 실내 가열실험에 대한 수치해석적 검토)

  • Dong-Joon, Youn;Changlun, Sun;Li, Zhuang
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.558-567
    • /
    • 2022
  • The evolution of temperature and thermal stress in a granite specimen is studied via heating experiment in the context of a high-level radioactive waste repository. A heating condition based on the decay-induced heat is applied to a cubic granite specimen to measure the temperature and stress distributions and their evolution over time. The temperature increases quickly due to heat conduction along the heated surfaces, but a significant amount of thermal energy is also lost through other surfaces due to air convection and conduction into the loading machine. A three-dimensional finite element-based model is used to numerically reproduce the experiment, and the thermo-mechanical coupling behavior and modeling conditions are validated with the comparison to the experimental results. The most crucial factors influencing the heating experiment are analyzed and summarized in this paper for future works.

Mine water inrush characteristics based on RQD index of rock mass and multiple types of water channels

  • Jinhai Zhao;Weilong Zhu;Wenbin Sun;Changbao Jiang;Hailong Ma;Hui Yang
    • Geomechanics and Engineering
    • /
    • v.38 no.3
    • /
    • pp.215-229
    • /
    • 2024
  • Because of the various patterns of deep-water inrush and complicated mechanisms, accurately predicting mine water inflows is always a difficult problem for coal mine geologists. In study presented in this paper, the water inrush channels were divided into four basic water diversion structures: aquifer, rock fracture zone, fracture zone and goaf. The fluid flow characteristics in each water-conducting structure were investigated by laboratory tests, and multistructure and multisystem coupling flow analysis models of different water-conducting structures were established to describe the entire water inrush process. Based on the research of the water inrush flow paths, the analysis model of different water inrush space structures was established and applied to the prediction of mine water inrush inflow. The results prove that the conduction sequence of different water-conducting structures and the changing rule of permeability caused by stress changes before and after the peak have important influences on the characteristics of mine water-gushing. Influenced by the differences in geological structure and combined with rock mass RQD and fault conductivity characteristics and other mine exploration data, the prediction of mine water inflow can be realized accurately. Taking the water transmitting path in the multistructure as the research object of water inrush, breaking through the limitation of traditional stratigraphic structure division, the prediction of water inflow and the estimation of potentially flooded area was realized, and water bursting intensity was predicted. It is of great significance in making reasonable emergency plans.

Topology Design Optimization and Experimental Validation of Heat Conduction Problems (열전도 문제에 관한 위상 최적설계의 실험적 검증)

  • Cha, Song-Hyun;Kim, Hyun-Seok;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.1
    • /
    • pp.9-18
    • /
    • 2015
  • In this paper, we verify the optimal topology design for heat conduction problems in steady stated which is obtained numerically using the adjoint design sensitivity analysis(DSA) method. In adjoint variable method(AVM), the already factorized system matrix is utilized to obtain the adjoint solution so that its computation cost is trivial for the sensitivity. For the topology optimization, the design variables are parameterized into normalized bulk material densities. The objective function and constraint are the thermal compliance of the structure and the allowable volume, respectively. For the experimental validation of the optimal topology design, we compare the results with those that have identical volume but designed intuitively using a thermal imaging camera. To manufacture the optimal design, we apply a simple numerical method to convert it into point cloud data and perform CAD modeling using commercial reverse engineering software. Based on the CAD model, we manufacture the optimal topology design by CNC.

A Study on Nonstoichiometry and Physical Properties of the Mixed Valency Sr$_{1+x}Er _{1-x} FeO _{4-y}$ Ferrite System (혼합원자가 Sr$_{1+x}Er _{1-x} FeO _{4-y}$ 훼라이트계의 비화학양론과 물성연구)

  • Chul Hyun Yo;Kwang Sun Ryu;Mu Sil Pyun;Sung Joo Lee;Joong Gill Choi
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.99-104
    • /
    • 1991
  • Nonstoichiometric solid solutions of Sr$_{1+x}Er _{1-x} FeO _{4-y}$ system (x = 0.00, 0.25, 0.50, 0.75 and 1.00) with layered $K_2NiF_4$ type structure were prepared at 1350$^{\circ}$C under atmospheric pressure. By the analysis of X-ray diffraction, the crystallographic structures of the solid solution of all compositions were found to be pseudo-tetragonal system. Nonstoichiometric chemical formulas have been determined by Mohr salt analysis. It shows that the amount of Fe$^{4+}$ increases with increasing x up to 0.50 and then decreases, and the value of oxygen nonstoichiometry increases with increasing x value. Mixed valency states of Fe$^{3+}$ and Fe$^{4+}$ in the sample were identified again by Mossbauer spectroscopic analysis at 298 K. Electrical conductivity varied within the semiconductivity range of 10-2 ∼ 10-7(${\Omega}$-1cm-1), activation energy for electrical conduction decreased with the increment of the mole ratio of Fe$^{4+}$ or ${\tau}$ value. The conduction mechanism could be explained by the hopping model of the conduction electrons between the valency states of Fe$^{3+}$ and Fe$^{4+}$.

  • PDF

Analysis of Tunneling Transition by Characteristics of Gate Oxide for Nano Structure FinFET (나노구조 FinFET에서 게이트산화막의 특성에 따른 터널링의 변화분석)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.9
    • /
    • pp.1599-1604
    • /
    • 2008
  • In this paper, it has been analyzed how transport characteristics is influenced on gate oxide properties in the subthreshold region as nano structure FinFET is fabricated. The analytical model is used to derive transport model, and Possion equation is used to obtain analytical model. The thermionic emission and tunneling current to have an influence on subthreshold current conduction are analyzed for nano-structure FinFET, and subthreshold swings of this paper are compared with those of two dimensional simulation to verify this model. As a result, transport model presented in this paper is good agreement with two dimensional simulation model, and this study shows that the transport characteristics have been changed by gate oxide properties. As gate length becomes smaller, funneling characteristics, one of the most important transport mechanism, have been analyzed.

A Study on the Thermal Design of the 100 hp High Temperature Superconductin (100 마력급 고온초전도 전동기의 열적설계에 관한 연구)

  • Seo, M.G.;Jo, Y.S.;Shon, M.H.;Kim, S.H.;Back,, S.K.;Kwon, Y.K.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.732-734
    • /
    • 2002
  • The rotor thermal analysis consists of determining the heat load to the rotor, sizing the cryogenic system, and ensuring that the HTS rotor will operate at the design goal of 30 K. The heat load to the rotor is due to heat conduction through the torque tubes, current leads, instrumentation. and radiation from the thermal shield and the end caps. Coil operating temperature is determined from the coil losses and the heat transport to the coolant. An FEM thermal conductivity model is developed to allow calculation of heat transport in HTS field coil according to the heat exchanger shape and coolant feeding method. The losses determine the size of the cryocooler.

  • PDF

Monte Carlo Simulation of Phonon Transport in One-Dimensional Transient Conduction and ESD Event (1 차원 과도 전도와 정전기 방전 현상에 관한 포논 전달의 몬테 카를로 모사)

  • Oh, Jang-Hyun;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2165-2170
    • /
    • 2007
  • At nanoscales, the Boltzmann transport equation (BTE) can best describe the behavior of phonons which are energy carriers in crystalline materials. Through this study, the phonon transport in some micro/nanoscale problems was simulated with the Monte Carlo method which is a kind of the stochastic approach to the BTE. In the Monte Carlo method, the superparticles of which the number is the weighted value to the actual number of phonons are allowed to drift and be scattered by other ones based on the scattering probability. Accounting for the phonon dispersion relation and polarizations, we have confirmed the one-dimensional transient phonon transport in ballistic and diffusion limits, respectively. The thermal conductivity for GaAs was also calculated from the kinetic theory by using the proposed model. Besides, we simulated the electrostatic discharge event in the NMOS transistor as a two-dimensional problem by applying the Monte Carlo method.

  • PDF

DC conduction mechanism of PEDOT by adding organic solvents (PEDOT 합성시 유기용매 첨가에 따른 DC 전기전도 메카니즘)

  • Park, Chang-Mo;Kim, Tae-Young;Kim, Youn-Sang;Kim, Jong-Eun;Suh, Kwang-S.
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1709-1711
    • /
    • 2004
  • 3,4-ethylenedioxythiophene(EDOT)을 ferric-toluenesulfonate(FTS)로 doping하여 합성하였다. 이때 다양한 유기용매를 함께 첨가하여 합성하였고, 온도에 따른 각각의 DC 전도도를 측정하였다. FTS로 dofing된 poly(3,4-ethylenedioxythiophene) (PEDOT)는 3-D variable range hopping model을 잘 따르며, alcohol류의 용매와 함께 합성한 경우는 상온의 DC 전도도가 2 S/cm로 0.4 S/cm의 reference 보다 전기전도를 증가시키는 반면, ketone류는 약 $10^{-11}$ S/cm로 전기전도를 감소시키는 경향을 보였다. 전도도의 증감과 doping level의 관계를 규명하기 위하여 X-ray 분석을 하였다.

  • PDF