• Title/Summary/Keyword: concrete strength model

Search Result 1,805, Processing Time 0.032 seconds

Modified models predicting punching capacity of edge column-slab joints considering different codes

  • Hamdy A. Elgohary;Mohamed A. El Zareef
    • Structural Engineering and Mechanics
    • /
    • v.89 no.4
    • /
    • pp.363-374
    • /
    • 2024
  • Significant changes have been made to estimate the punching shear capacity for edge column-slab joints in the latest editions of most current codes. The revised equations account for axial forces as well as moments conveyed to columns from slabs, which have a substantial impact on the punching resistance of such joints. Many key design parameters, such as reinforcement-ratio, concrete strength, size-effect, and critical-section perimeter, were treated differently or even ignored in various code provisions. Consequently, wide ranges of predicted punching shear strength were detected by applying different code formulas. Therefore, it is essential to assess the various current Codes' design-equations. Because of the similarity in estimated outcomes, only the ACI, EC, and SNiP are used in this study to cover a wide range of estimation ranges from highly conservative to unconservative. This paper is devoted to analyzing the techniques in these code provisions, comparing the estimated punching resistance with available experimental data, and finally developing efficient models predicting the punching capacity of edge column-slab connections. 63 samples from past investigations were chosen for validation. To appropriately predict the punching shear, newly updated equations for ACI and SNiP are provided based on nonlinear regression analysis. The proposed equations'results match the experimental data quite well.

The Strength of the Relationship between Semantic Similarity and the Subcategorization Frames of the English Verbs: a Stochastic Test based on the ICE-GB and WordNet (영어 동사의 의미적 유사도와 논항 선택 사이의 연관성 : ICE-GB와 WordNet을 이용한 통계적 검증)

  • Song, Sang-Houn;Choe, Jae-Woong
    • Language and Information
    • /
    • v.14 no.1
    • /
    • pp.113-144
    • /
    • 2010
  • The primary goal of this paper is to find a feasible way to answer the question: Does the similarity in meaning between verbs relate to the similarity in their subcategorization? In order to answer this question in a rather concrete way on the basis of a large set of English verbs, this study made use of various language resources, tools, and statistical methodologies. We first compiled a list of 678 verbs that were selected from the most and second most frequent word lists from the Colins Cobuild English Dictionary, which also appeared in WordNet 3.0. We calculated similarity measures between all the pairs of the words based on the 'jcn' algorithm (Jiang and Conrath, 1997) implemented in the WordNet::Similarity module (Pedersen, Patwardhan, and Michelizzi, 2004). The clustering process followed, first building similarity matrices out of the similarity measure values, next drawing dendrograms on the basis of the matricies, then finally getting 177 meaningful clusters (covering 437 verbs) that passed a certain level set by z-score. The subcategorization frames and their frequency values were taken from the ICE-GB. In order to calculate the Selectional Preference Strength (SPS) of the relationship between a verb and its subcategorizations, we relied on the Kullback-Leibler Divergence model (Resnik, 1996). The SPS values of the verbs in the same cluster were compared with each other, which served to give the statistical values that indicate how much the SPS values overlap between the subcategorization frames of the verbs. Our final analysis shows that the degree of overlap, or the relationship between semantic similarity and the subcategorization frames of the verbs in English, is equally spread out from the 'very strongly related' to the 'very weakly related'. Some semantically similar verbs share a lot in terms of their subcategorization frames, and some others indicate an average degree of strength in the relationship, while the others, though still semantically similar, tend to share little in their subcategorization frames.

  • PDF

Over-Strength of Low-Rise RC Frame in Low Seismic Zone (약지진동 지역의 저층 RC 골조의 초과강도)

  • 이영욱
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.9-18
    • /
    • 1999
  • The seismic over-strength factor Ω is evaluated for 4-story reinforced concrete buildings in Korea, which has low seismic intensity. For this study, the seismic load suggested in' Aseismic guideline research- phase ll' (in Korea) is used. When 3D study-models are designed, span length and bay number are varied and accidental torsional moment is considered. And the models are analyzed by push-over analysis, in which external and internal frame are connected by rigid-link. As a result of numerical experiments, Ω is increased as the bay number or span length is increased. Because, by the including of accidental torsional moment in designing process, the increased ratio of strength of external columns is larger than the increased ratio of span length or bay number. And this makes the failure mode of model closer or strong-column and weak-beam mechanism.

  • PDF

Design Approach for Boundary Element of Flexure-Governed RC Slender Shear Walls Based on Displacement Ductility Ratio (휨 항복형 철근콘크리트 전단벽의 경계요소설계를 위한 변위연성비 모델제시)

  • Mun, Ju-Hyun;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.6
    • /
    • pp.687-694
    • /
    • 2014
  • This study established a displacement ductility ratio model for ductile design for the boundary element of shear walls. To determine the curvature distribution along the member length and displacement at the free end of the member, the distributions of strains and internal forces along the shear wall section depth were idealized based on the Bernoulli's principle, strain compatibility condition, and equilibrium condition of forces. The confinement effect at the boundary element, provided by transverse reinforcement, was calculated using the stress-strain relationship of confined concrete proposed by Razvi and Saatcioglu. The curvatures corresponding to the initial yielding moment and 80% of the ultimate state after the peak strength were then conversed into displacement values based on the concept of equivalent hinge length. The derived displacement ductility ratio model was simplified by the regression approach using the comprehensive analytical data obtained from the parametric study. The proposed model is in good agreement with test results, indicating that the mean and standard deviation of the ratios between predictions and experiments are 1.05 and 0.19, respectively. Overall, the proposed model is expected to be available for determining the transverse reinforcement ratio at the boundary element for a targeted displacement ductility ratio.

Determination of Degree of Hydration, Temperature and Moisture Distributions in Early-age Concrete (초기재령 콘크리트의 수화도와 온도 및 습도분포 해석)

  • 차수원;오병환;이형준
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.813-822
    • /
    • 2002
  • The purpose of the present study is first to refine the mathematical material models for moisture and temperature distributions in early-age concrete and then to incorporate those models into finite element procedure. The three dimensional finite element program developed in the present study can determine the degree of hydration, temperature and moisture distribution in hardening concrete. It is assumed that temperature and humidity fields are fully uncoupled and only the degree of hydration is coupled with two state variables. Mathematical formulation of degree of hydration Is based on the combination of three rate functions of reaction. The effect of moisture condition as well as temperature on the rate of reaction is considered in the degree of hydration model. In moisture transfer, diffusion coefficient is strongly dependent on the moisture content in pore system. Many existing models describe this phenomenon according to the composition of mixture, especially water to cement ratio, but do not consider the age dependency. Microstructure is changing with the hydration and thus transport coefficients at early ages are significantly higher because the pore structure in the cement matrix is more open. The moisture capacity and sink are derived from age-dependent desorption isotherm. Prediction of a moisture sink due to the hydration process, i.e. self-desiccation, is related to autogenous shrinkage, which may cause early-age cracking in high strength and high performance concrete. The realistic models and finite element program developed in this study provide fairly good results on the temperature and moisture distribution for early-age concrete and correlate very well with actual test data.

Experimental Evaluation on Effective Moment of Inertia of Reinforced Concrete Simple Beams and Continuos Beams Considering Tension Stiffening Effect (인장증강효과를 고려한 철근콘크리트 단순보와 연속보의 유효 단면2차모멘트에 대한 실험적 검증)

  • Lee, Seung-Bae;Yoon, Hyeong-Jae;Kim, Kang-Su;Kim, Sang-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.285-288
    • /
    • 2008
  • A model for the effective moment of inertia $I_{\epsilon}$ as expressed in Branson's equation, in which reduction of the flexural rigidity of RC beams due to cracking are aptly taken into accoun,t is presented. However, KCI Code isn`t considered tension stiffening as it is in debonding of reinforcing bar. Therefore, this equation need to set up suitable to our design Code. The experimental work consisted of casting and testing a total of 6 simply supported reinforced concrete beams and a total of 4 continuos reinforced concrete beams under two point concentrated loads. Main parameters are concrete strength, coverage, bond between concrete and reinforcing bars, are known as have an effect on deflection and tension stiffening. Every test beams had the same $250{\times}350$mm rectangular section, with a simply supported clear span of 4,400 mm and a continuos clear span of 6,500 mm. Comparison of the test results with values obtained using the KCI Code equation of the effective moment of inertia showed a noticeable difference.

  • PDF

Reliability-Based Assessment of Structural Safety of Steel-Concrete Hybrid Cable-Stayed Bridge Erected by the FCM and FSM during Construction (FCM과 FSM공법에 의한 강-콘크리트 복합사장교의 신뢰성에 기초한 시공간 구조안전도평가)

  • Yoon, Jung Hyun;Cho, Hyo Nam
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.5
    • /
    • pp.515-526
    • /
    • 2007
  • In this study, the models and methods for the safety assessment of Steel-Concrete Hybrid Cable-Stayed Bridge, which consists of steel composite girder and concrete girder erected by the FCM(Free Cantilever Method) and FSM(Full Staging Method) are proposed for the assurance of structural safety and the prevention against bridge collapse during construction. By the structural reliability approach that reasonably considers the uncertainties associated with the resistance and the load effect, the resistance and the load distribution characteristics of Steel-Concrete Hybrid Cable-Stayed Bridgeare defined and the strength limit state equations of permanent structures and temporary structures during construction are suggested. An AFOSM algorithm and MCS technique are used for the reliability analysis of cables, pylons, girders, steel-concrete conjunction part and temporary bents. Also, component reliability analyses are performed at the construction stages based on the structural system model. To demonstrate their rationality and practicality, the proposed models and approaches are applied to a real bridge. The sensitivity analyses of main parameters are performed in order to identify the critical factors that control the safety of similar bridges. As a result, it may be stated that the proposed models could be implemented as a rational and practical approach for the safety assessment of Steel-Concrete Hybrid Cable-stayed bridges erected by FCM and FSM during construction.

Static Behavior Analysis of Spillway Pier for Dam Safety Evaluation (댐 안전성 평가를 위한 여수로 피어부의 정적 거동 분석)

  • Jang, Bong-Seok;Lim, Jeong-Yeul;Lee, Myung-Kue;Lee, Hyung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.1
    • /
    • pp.11-18
    • /
    • 2007
  • Seismic performance evaluation for dam safety evaluation has been continually conducted. However the behavior analysis for the spillway pier which is known as the weak point of dam is seldom reported. Therefore, this study performed the static loading tests for a prototype structures as elementary tests for the final seismic performance evaluation of dam safety. The prototype of pier structure has 1/20 scale and it adopts to strength model. And cracking loads and ultimate loads of real structures are calculated through numerical analysis using commercial FEM program (ABAQUS). The results of this study show some difference between the results of prototype tests and the results of numerical analysis. Also, the ultimate and cracking loads can be estimated through the prototype loading test and numerical analysis.

Interaction between opening space in concrete slab and non-persistent joint under uniaxial compression using experimental test and numerical simulation

  • Vahab Sarfarazi;Kaveh Asgari;Mehdi Kargozari;Pouyan Ebneabbasi
    • Computers and Concrete
    • /
    • v.31 no.3
    • /
    • pp.207-221
    • /
    • 2023
  • In this investigation, the interaction between opening space and neighboring joint has been examined by experimental test and Particle flow code in two dimension (PFC2D) simulation. Since, firs of all PFC was calibrated using Brazilian experimental test and uniaxial compression test. Secondly, diverse configurations of opening and neighboring joint were provided and tested by uniaxial test. 12 rectangular sample with dimension of 10 cm*10 cm was prepared from gypsum mixture. One quarter of tunnel and one and or two joint were drilled into the sample. Tunnel diameter was 5.5 cm. The angularities of joint in physical test were 0°, 45° and 90°. The angularities of joint in numerical simulation were 0°, 30°, 60°, -30°, -45°, -60° and its length were 2cm and 4cm. Loading rate was 0.016 m/s. Tensile strength of material was 4.5 MPa. Results shows that dominant type of crack which took place in the model was tensile cracks and or several shear bands develop within the model. The Final stress is minimum in the cases where oriented angle is negative. The failure stress decrease by decreasing the joint angle from 30° to 60°. In addition, the failure stress decrease by incrementing the joint angle from -30° to -60°. The failure stress was incremented by decreasing the number of notches. The failure stress was incremented by decreasing the joint length. The failure stress was incremented by decreasing the number of notches. Comparing experimental results and numerical one, showed that the failure stress is approximately identical in both conditions.

A Nonlinear Material Model for Concrete Compression Strength Considering Confining Effect (30-40Mpa의 압축강도를 갖는 콘크리트의 구속효과를 고려한 비선형 재료모델의 적용성 검토)

  • Lee, Heon-Min;Park, Jae-Guen;Hwang, Jae-Min;Yun, Hee-Tack;Shin, Hyun-Mock
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.379-382
    • /
    • 2009
  • 횡방향으로 구속된 콘크리트의 응력-변형률 거동은 구속되지 않은 콘크리트와는 다른 거동을 한다. 보통강도 콘크리트에서 구속효과를 고려한 콘크리트 재료모델로는 Mander 모델이 대표적이며 고강도 콘크리트의 구속효과의 경우 여러 연구자들에 의하여 제안된 모델 중 공시체 수준의 실험결과와 잘 일치하는 Sakino-Sun 모델을 사용하였다. 보통강도에서는 Mander모델을 고강도 콘크리트에서는 Sakino-Sun 모델을 사용하였으나 중간 강도인 30-40MPa의 강도에서 Mander 모델과 Sakino-Sun 모델의 적용시 실험결과와 해석결과가 다소 차이를 보이며 또한 두 모델은 적용할 수 있는 최대 또는 최소 콘크리트 압축강도의 한계범위가 명확하지 않다. 따라서 이 연구에서는 30-40MPa의 강도의 횡방향으로 구속된 콘크리트의 비선형 재료모델을 제안하고 실제 30-40MPa의 압축강도를 갖는 콘크리트 공시체의 일축압축시험 결과와의 비교를 통해 그 적용성을 검토하였다.

  • PDF