• Title/Summary/Keyword: concrete pipes

검색결과 159건 처리시간 0.027초

Failure Risk Assessment of Reinforced Concrete Sewer Pipes on Joint-Related Defects (원심력철근콘크리트관의 결함에 따른 심각도 평가 -이음부 사례를 중심으로-)

  • Han, Sangjong;Shin, Hyunjun;Hwang, Hwankook
    • Journal of Korean Society of Water and Wastewater
    • /
    • 제27권6호
    • /
    • pp.787-796
    • /
    • 2013
  • Sewer joint-related defect is one of the most common domestic sewer defects along with the lateral pipe problem. However, there are currently no criteria that precisely assess the joint-related sewer defects. Therefore, this study examined the joint-related sewer defects found in domestic circumstances, classified them according to the suggested defect code, and presented the examples of defect pictures. Each defect code was organized as the process of out of pipeline alignment (OPA) which shows the progress in deterioration. Each defect was classified into 5 grades depending on appropriate repair and rehabilitation method. The result of this study is expected to be useful for domestic CCTV inspectors to assess the sewer condition and helpful for managers to make a decision of repair and rehabilitation.

On the Characteristics of the Circulating Water Tank (회류수조의 특성)

  • 윤갑동
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • 제13권2호
    • /
    • pp.9-14
    • /
    • 1977
  • The present paper concerns itself with characteristics of the circulating water tank, designed and constructed at the National Fisheries University of Busan. It is an elliptical ferro-concrete water tank 12 m long, 7 m wide and 1 m deep. The experimented part of water way is 5.67 In long, 1. 76 m wide and 1m deep. For the uniform straight flow are attached stainless plates in the curved parts and stainless pipes just befor the experimental part. The speed of flow can be easily controlled by changing the electric current in armarture of motor from 0 to 30 ampere according to the method of Toulon phase shift. The speed field is uniform and deviation is 0.04 when mean speed is 0.53m/sec at 225 R. P. M. except in the areas within 6cm from the walls.

  • PDF

The Thermal conductivity analysis and performance evaluation on the pavement applying geothermal snow melting system (지열 융설시스템을 적용한 포장체의 열전도분석 및 구조안전성 검토)

  • Lee, Seung-Ha;Park, Jeong-Sik;Lee, Seok-Jin;Kim, Bong-Chan
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • 제6권1호
    • /
    • pp.17-22
    • /
    • 2010
  • A sliding accident on the road have a high percentage by road freezing, especially, it is often appeared at bridges and tunnel of freezing areas. Thus, the stability of road operations is enhanced by preventing a partial freezing phenomenon. According to the geothermal snow melting system analysis, a pattern of thermal conductivity is found out about pavement materials of concrete and asphalt when it is buried. For the feasibility study on geothermal snow melting system, analysis of the ground melting point when operating system, life evaluation of pavements and safety evaluation of pipes are performed.

Heating and Cooling Performance of a Ground Coupled Heat Pump System with Energy-Slab (에너지슬래브 적용 지열원 열펌프 시스템의 성능 특성에 관한 실증 연구)

  • Choi, Jong-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • 제24권2호
    • /
    • pp.196-203
    • /
    • 2012
  • Energy foundations and other thermo-active ground structure, energy wells, energy-slab, and pavement heating and cooling represent an innovative technology that contributes to environmental protection and provides substantial long-term cost savings and minimized maintenance. This paper focuses on earth-contact concrete elements that are already required for structural reasons, but which simultaneously work as heat exchangers. Pipes, energy slabs, filled with a heat carrier fluid are installed under conventional structural elements, forming the primary circuit of a geothermal energy system. The natural ground temperature is used as a heat source in winter and a heat sink in summer. The geothermal heat pump system with energy-slab represented very high heating and cooling performance due to the stability of EWT from energy slab. However, the performance of it seemed to be affected by the atmospheric air temperature.

A Study on Thermal Conductivity Properties of Ground Heat Exchangers for GSHP systems (지열냉난방시스템 수직형 지중열교환기 그라우트의 열적 특성에 관한 연구)

  • Baek, Sung-Kwon;Jeon, Joong-Kyu;An, Hyung-Jun
    • Proceedings of the SAREK Conference
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.429-433
    • /
    • 2007
  • Cement mortar and concrete can be used as grouts but problems regarding shrinkage and the discord of coefficients of thermal expansion between grouts and HDPE pipes has to be solved. Thermal conductivities of wet condition two times larger than those of dry condition, except for pure cement mortar. The addition of sand into the cement grouts greatly increases the thermal conductivity. The addition of bentonite into the cement grouts reduces thermal conductivity thus reducing the density. Bentonite grouting must be used only below the groundwater table since bentonite grouts possesses high shrinkage property in dry condition. The addition of sand prevents the shrinkage of bentonite grouts. Bentonite manufactured in Korea can be used since they possess similar thermal conductivities with imported products. The addition of sand into the bentonite grouts greatly increases the thermal conductivity.

  • PDF

A review of the application of acoustic emission technique in engineering

  • Gholizadeh, S.;Leman, Z.;Baharudin, B.T.H.T.
    • Structural Engineering and Mechanics
    • /
    • 제54권6호
    • /
    • pp.1075-1095
    • /
    • 2015
  • The use of acoustic emission (AE) technique for detecting and monitoring damages and the progress on damages in different structures is widely used and has earned a reputation as one of the most reliable and well-established technique in non-destructive testing (NDT). Acoustic Emission is a very efficient and effective technology used for fracture behavior and fatigue detection in metals, fiberglass, wood, composites, ceramics, concrete and plastics. It can also be used for detecting faults and pressure leaks in vessels, tanks, pipes, as well as for monitoring the progression of corrosion in welding. This paper reviews major research developments over the past few years in application of acoustic emission in numerous engineering fields, including manufacturing, civil, aerospace and material engineering.

On site monitoring during nearby drilling operations toward a geothermal power system installation

  • Bortoluzzi, Daniele;Casciati, Sara;Faravelli, Lucia;Francolini, Matteo
    • Smart Structures and Systems
    • /
    • 제30권3호
    • /
    • pp.317-325
    • /
    • 2022
  • Among the approaches to the production of "green" energy, geothermal power systems are becoming quite popular in Europe. Their installation in existing buildings requires an extended, external pipes appendix and its laying operation needs a drilling activities nearby structural skeletons often designed to support static loads only, especially when ancient buildings are targeted. This contribution reports and discusses the experimental results achieved within a specific case study within the European project GEOFIT. In particular, standard accelerometric measurements in and nearby a single-story reinforced concrete building are collected and analysed in the absence of drilling (pre-drilling) and during drilling activities (drilling phase) to monitor the structure response to the external source of vibrations related to the excavations phase. The target is to outline automatic guidelines toward installations preventing from any sort of structural damage.

Advantages and disadvantages of renewable energy-oil-environmental pollution-from the point of view of nanoscience

  • Shunzheng Jia;Xiuhong Niu;Fangting Jia;Tayebeh Mahmoudi
    • Advances in concrete construction
    • /
    • 제16권1호
    • /
    • pp.69-78
    • /
    • 2023
  • This investigation delves into the adverse repercussions stemming from the impact of arsenic on steel pipes concealed within soil designated for rice cultivation. Simultaneously, the study aims to ascertain effective techniques for detecting arsenic in the soil and to provide strategies for mitigating the corrosion of steel pipes. The realm of nanotechnology presents promising avenues for addressing the intricate intersection of renewable energy, oil, and environmental pollution from a novel perspective. Nanostructured materials, characterized by distinct chemical and physical attributes, unveil novel pathways for pioneering materials that exert a substantial impact across diverse realms of food production, storage, packaging, and quality control. Within the scope of the food industry, the scope of nanotechnology encompasses processes, storage methodologies, packaging paradigms, and safeguards to ensure the safety of consumables. Of particular note, silver nanoparticles, in addition to their commendable antibacterial efficacy, boast anti-fungal and anti-inflammatory prowess, environmental compatibility, minimal irritability and allergenicity, resilience to microbial antagonism, thermal stability, and robustness. Confronting the pressing issue of arsenic contamination within both environmental settings and the food supply is of paramount importance to preserve public health and ecological equilibrium. In response, this study introduces detection kits predicated upon silver nanoparticles, providing an expeditious and economically feasible avenue for identifying arsenic concentrations ranging from 0.5 to 3 ppm within rice. Subsequent quantification employs Hydride Atomic Absorption Spectroscopy (HG-AAS), which features a detection threshold of 0.05 ㎍/l. A salient advantage inherent in the HG-AAS methodology lies in its capacity to segregate analytes from the sample matrix, thereby significantly reducing instances of spectral interference. Importantly, the presence of arsenic in the soil beneath rice cultivation establishes a causative link to steel pipe corrosion, with potential consequences extending to food contamination-an intricate facet embedded within the broader tapestry of renewable energy, oil, and environmental pollution.

Investigation of pipe shear connectors using push out test

  • Nasrollahi, Saeed;Maleki, Shervin;Shariati, Mahdi;Marto, Aminaton;Khorami, Majid
    • Steel and Composite Structures
    • /
    • 제27권5호
    • /
    • pp.537-543
    • /
    • 2018
  • Mechanical shear connectors are commonly used to transfer longitudinal shear forces across the steel-concrete interface in composite beams. Steel pipe as a new shear connector is proposed in this research and its performance to achieve composite strength is investigated. Experimental monotonic push-out tests were carried out for this connector. Then, a nonlinear finite element model of the push-out specimens is developed and verified against test results. Further, the finite element model is used to investigate the effects of pipe thickness, length and diameter on the shear strength of the connectors. The ultimate strengths of these connectors are reported and their respective failure modes are discussed. This paper comprises of the push-out tests of ten specimens on this shear connector in both the vertical and horizontal positions in different reinforced concretes. The results of experimental tests are given as load-deformation plots. It is concluded that the use of these connectors is very effective and economical in the medium shear demand range of 150-350 KN. The dominant failure modes observed were either failure of concrete block (crushing and splitting) or shear failure of pipe connector. It is shown that the horizontal pipe is not as effective as vertical pipe shear connector and is not recommended for practical use. It is shown that pipe connectors are more effective in transferring shear forces than channel and stud connectors. Moreover, based on the parametric study, a formula is presented to predict the pipe shear connectors' capacity.

Shear Behavior of Reinforced Concrete Deep Beams with Web Openings (개구부를 갖는 철근콘크리트 깊은 보의 전단거동)

  • 이진섭;김상식
    • Journal of the Korea Concrete Institute
    • /
    • 제13권6호
    • /
    • pp.619-628
    • /
    • 2001
  • In building construction, openings of the story-height deep beams are usually required for accessibility and service lines such as air conditioning ducts, drain pipes and electric units. It is known that the main parameters affecting the load bearing capacity of deep beams with web openings are size, shape, location and reinforcements of openings. However, there have been no pertinent theories and national design codes for predicting ultimate shear strength of reinforced concrete deep beams with web openings. In this study, the shear behavior of simply supported reinforced concrete deep beams with web openings subject to concentrated loads has been scrutinized experimentally. A total of 34 specimens, the geometry of openings, its reinforcements and shear span to depth ratio, being taken as the experimental variables, has been cast and tested in the laboratory. The effects of these structural parameters on the shear strength and crack initiation and propagation have been carefully checked and analyzed. From the tests, it has been observed that the failures of all specimens were due to shear mechanism and the ultimate strength of specimens varies according to the location of openings, by which the formation of compression struts between the loading points and supports are deterred. All of the test results of specimens have been compared with the formulas proposed by previous researchers. The results were closely coincident with the formulas given by Ray and Kong's equation except for some X series specimens having a larger dimension of openings beyond the geometric limits of proposed equations.