• 제목/요약/키워드: concrete form

검색결과 1,267건 처리시간 0.028초

내한제 및 단열거푸집을 이용한 한중콘크리트의 구조체 적용 실험 (An Experiment on the Structure Application of Cold Weather Concreting Using Anti-freeze Agent and Insulating Form)

  • 김경민;손성운;김기철;오선교;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2002년도 학술논문발표회
    • /
    • pp.21-26
    • /
    • 2002
  • This paper is intended to verify the efficiency of anti-freeze agent and insulating form by analyzing the temperature history and the property of strength-increase about the concrete that is placed in the insulating form and normal form, using new type anti-freeze agent in batcher plant According to the results about the temperature history, while the lowest temperature shows 3$^{\circ}C$ in case of normal concrete + euroform, 4$^{\circ}C$ in case of normal concrete + insulating form, it shows 6$^{\circ}C$ in anti-freeze agent + the insulating form, so the effect is most favorable. The compressive strength with mixing anti-freeze agent or not, shows high in order of standard curing, structure-managing and open air-placed specimen and the concrete mixing anti-freeze agent shows the highest compressive strength-increase.

  • PDF

비정형 콘크리트 패널의 생산관리 기초연구 (A Basic Study of Production Management of Free-form Concrete Panels)

  • 손승현;임지영;나영주;김선국
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2018년도 춘계 학술논문 발표대회
    • /
    • pp.33-34
    • /
    • 2018
  • Currently, free-form building has been increased worldwide. However, as a finishing material of free-form building, the production of free-form concrete panels(FCPs) spends lots of cost and efforts since it is difficult to reuse the FCP formwork and lots of workers are needed to make free-form curve. In addition, the technology to produce the FCP economically and easily is insufficient. Therefore, the objective of this study is a basic study regarding production management for developing free-form concrete panels. To achieve the objective, the property of FCP and condition for effective production management and production process are analyzed. The results of this study can utilize to develop the algorithm for FCP production management.

  • PDF

플라이애시 시멘트를 사용한 콘크리트의 거푸집 존치기간 결정에 관한 연구 (A Study on the Determination of the Removal Times of Form in Concrete Using Fly Ash Cement)

  • 신병철;한민철
    • 한국환경과학회지
    • /
    • 제15권2호
    • /
    • pp.185-191
    • /
    • 2006
  • In this paper, removal time of side form from concrete using OPC(ordinary Portland cement) and FAC(fly ash cement) are proposed by appling logistic model, which evaluates the strength development of concrete with maturity. W/B, types of cement and curing temperatures are adapted as test parameters. The estimation of strength development by logistic model has a good agreement between calculated values and measured ones. As for the removal times of form works suggested in this paper, as W/8 increases, curing temperature decreases and fly ash is used, removal time of side form is prolonged. Removal time of form from concrete using OPC suggested in this paper is shorter $2.5\~3.5$ days than those of KASS-5 (Korean Architectural Standard Specifications-5) in the range of over $20^{\circ}C$. And in the range of $10\~20^{\circ}C$ removal time of form is shorter than that of KASS-5 by as much as $4\~4.5$ days. The use of FAC results in an increase in removal time of form compared to that of OPC by about 1 day.

FCP(Free-form Concrete Panel) 제작에 사용되는 FSM(Free-form Silicone Mold)의 한계와 해결방안 (Limitation and Solution of Free-form Silicone Mold (FSM) used in Free-form Concrete Panel (FCP) Manufacture)

  • 정경태;윤종영;유채연;이동훈
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 가을학술발표대회논문집
    • /
    • pp.21-22
    • /
    • 2023
  • In order to manufacture high-quality free-form concrete panel (FCP), it is necessary to analyze the limitations of free-form silicone mold (FSM) and conduct technology development research. Currently, the FSM used in FCP manufacture is classified into a side silicon mold(SSM) and a lower silicon mold(LSM). In this study, the limitations of each silicon mold were analyzed and solutions were proposed. In the case of side silicon mold, there is a limit to cannot supporting the side pressure of concrete. Therefore, a mold stacking method was proposed, and at the same time, a process of correcting the movement value of the rod was proposed. In the case of the lower silicon mold, there is a limit to completely implementing the design shape. Therefore, a real-time scanning method and a process of displaying FCP shape coordinates were proposed. The results of this study are expected to be used as basic data for manufacturing high-quality FCP.

  • PDF

A New Form of Nondestructive Strength-Estimating Statistical Models Accounting for Uncertainty of Model and Aging Effect of Concrete

  • Hong, Kee-Jeung;Kim, Jee-Sang
    • 비파괴검사학회지
    • /
    • 제29권3호
    • /
    • pp.230-234
    • /
    • 2009
  • As concrete ages, the surrounding environment is expected to have growing influences on the concrete. As all the impacts of the environment cannot be considered in the strength-estimating model of a nondestructive concrete test, the increase in concrete age leads to growing uncertainty in the strength-estimating model. Therefore, the variation of the model error increases. It is necessary to include those impacts in the probability model of concrete strength attained from the nondestructive tests so as to build a more accurate reliability model for structural performance evaluation. This paper reviews and categorizes the existing strength-estimating statistical models of nondestructive concrete test, and suggests a new form of the strength-estimating statistical models to properly reflect the model uncertainty due to aging of the concrete. This new form of the statistical models will lay foundation for more accurate structural performance evaluation.

저온양생하에서 거푸집 종류에 따른 콘크리트의 압축강도와 적산온도 특성 평가 (Evaluation of the Compressive Strength and Maturity According to Form Types in Low Temperature)

  • 최시현;문영범;김재영;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2016년도 추계 학술논문 발표대회
    • /
    • pp.5-6
    • /
    • 2016
  • When concrete exposed to low temperatures, the free water in the concrete is freeze. If the pressure developed exceeds the tensile strength of the concrete, the cavity will dilate and rupture. It cause expansion and cracking, scaling and crumbling of the concrete. In this study, to prevent such damage, five different types of form were used. Concrete was poured into each form, cured for 7 days at temperature of -10℃. To measure the temperature history, two thermocouples were installed on each of the inside and outside. And to measure the compressive strength, collected core from each form. The maturity is formed by temperature history. The maturity and the compressive strength has a correlation.

  • PDF

콘크리트제품의 동결저항성에 관한 실험적 연구 (Experimental Study on the Frost Resistance of Concete Product)

  • ;;이상훈
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2011년도 정기 학술발표대회
    • /
    • pp.91-91
    • /
    • 2011
  • The quality of the surface layer in concrete structures plays an important role in the durability of the concrete. The concrete factory products are made as they improve the appearance of the surface and compressive strength in need. A common criterion to judge the quality of concrete products frequently seen in our daily life appears to be "beauty" in terms of consistent shaping. However, as for most concrete curb in such areas where a large amount of anti-freezing agents(NaCl) and ice and snow melting agents(CaCl2) are spread over roads to ensure road safety during the winter season, since deterioration advances from the surface, scaling is seen on the surface concrete due to deterioration which combined freezing damage and salt damage. Especially, In cold northern districts, the spreading amount of deicing salts increases by regulation of studded tire use, and the scaling of the concrete products, the various parts of concrete structures for roads is increasing in recent years. In this study, L-shape concrete curb were targeted, the permeable form method with the commercial permeable sheet was applied to it and the improvements of the quality were examined. By the permeable form method, surface layers got strengthened, which prevented permeation of the deterioration factor from the outside, and the scaling resistance of the upper surface where the permeable sheet was applied improved exceedingly. It will be expected by applying the permeable form method to various concrete products that frost resistance improves and scaling damage decreases.

  • PDF

Cause of Surface voids in Concrete Attached to an Aluminum Form, and Measures for Prevention

  • Noh, Sang-Kyun;Lee, Seung-Hoon;Han, Cheon-Goo
    • 한국건축시공학회지
    • /
    • 제13권5호
    • /
    • pp.457-464
    • /
    • 2013
  • Traditionally, the material used for the form in reinforced concrete construction has been wood or steel. But recently, aluminum forms have been widely used in wall structures such as apartment buildings. Aluminum is light, easy to handle, and economically advantageous, but the hydrogen gas created due to its reaction with the alkali component in concrete gives rise to air pockets on the concrete's surface, and deteriorates the surface's finishability. In this research, to determine the influence of aluminum material on concrete, the cement paste W/C and its chemical reactivity in alkali and acid solution were analyzed. As a prevention plan, the influence of the number of applications of calcium hydroxide and various surface coating materials was analyzed. Through the analysis, it was found that the surface voids on the aluminum form are the result of the reaction of hydrogen gas with an alkali such as $Ca(OH)_2$. This can be prevented by the surface treatment of $Ca(OH)_2$, separating material and coating material. However, poor surface form and damages to the form are expected to cause quality degradation because of the aluminum-concrete interaction. Therefore, thorough surface treatment, rather than the type of separating material or coating material, is considered the most important target of management.

인공신경망을 이용한 콘크리트 강도 추정 (Prediction of Concrete Strength Using Artificial Neural Networks)

  • 이승창;안정찬;정문영;임재홍
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.997-1002
    • /
    • 2002
  • Traditional prediction models have been developed with a fixed equation form based on the limited number of data and parameters. If new data is quite different from original data, then the model should update not only its coefficients but also its equation form. However, artificial neural network (ANN) does not need a specific equation form. Instead of that, it needs enough input-output data. Also, it can continuously re-train the new data, so that it can conveniently adapt to new data. Therefore, the purpose of this paper is to develop the I-PreConS (Intelligent system for PREdiction of CONcrete Strength using ANN) that provides in-place strength information of the concrete to facilitate concrete form removal and scheduling for construction.

  • PDF

원전 배합 콘크리트의 외기대류계수에 관한 연구 (Study on the Coefficient of Air Convection for Concrete Mix of Nuclear Power Plant)

  • 이윤;김진근;최명성;송영철;우상균
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.148-151
    • /
    • 2004
  • The hardening of concrete after setting is accompanied with nonlinear temperature distribution caused by development of hydration heat of cement. Especially at early ages, this nonlinear distribution has a large influence on the tensile cracking. As a result, in order to predict the exact temperature distribution in concrete structures it is required to examine thermal properties of concrete. In this study, the coefficient of air convection for concrete mix of nuclear power plant, which presents thermal transfer between surface of concrete and air, was experimentally investigated with variables such as velocity of wind and types of form. The coefficient of air convection obtained from experiment increases with velocity of wind, and its dependance on wind velocity is varied with types of form. This tendency is due to a combined heat transfer system of conduction through form and convection to air. The coefficient of air convection for concrete mix of nuclear power plant obtained from this study was well agreed with the existing models.

  • PDF