• 제목/요약/키워드: concrete evaluation

검색결과 3,570건 처리시간 0.032초

Advanced performance evaluation system for existing concrete bridges

  • Miyamoto, Ayaho;Emoto, Hisao;Asano, Hiroyoshi
    • Computers and Concrete
    • /
    • 제14권6호
    • /
    • pp.727-743
    • /
    • 2014
  • The management of existing concrete bridges has become a major social concern in many developed countries due to the large number of bridges exhibiting signs of significant deterioration. This problem has increased the demand for effective maintenance and renewal planning. In order to implement an appropriate management procedure for a structure, a wide array of corrective strategies must be evaluated with respect to not only the condition state of each defect but also safety, economy and sustainability. This paper describes a new performance evaluation system for existing concrete bridges. The system evaluates performance based on load carrying capability and durability from the results of a visual inspection and specification data, and describes the necessity of maintenance. It categorizes all girders and slabs as either unsafe, severe deterioration, moderate deterioration, mild deterioration, or safe. The technique employs an expert system with an appropriate knowledge base in the evaluation. A characteristic feature of the system is the use of neural networks to evaluate the performance and facilitate refinement of the knowledge base. The neural network proposed in the present study has the capability to prevent an inference process and knowledge base from becoming a black box. It is very important that the system is capable of detailing how the performance is calculated since the road network represents a huge investment. The effectiveness of the neural network and machine learning method is verified by comparing diagnostic results by bridge experts.

분체계 고유동 콘크리트의 재료분리 판정방법 분석 (Segregation Evaluation Method for Powder Based High Fluidity Concrete)

  • 이혁주;한준희;이재진;한동엽;한인덕;한민철
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2018년도 춘계 학술논문 발표대회
    • /
    • pp.140-141
    • /
    • 2018
  • There are three types of high fluidity concrete: powder based, VMA based, and combined. In the case of the powder based high fluidity concrete mixture, according to the textbook, increased viscosity due to the replaced fly ash can prevent segregation of coarse aggregate. On the other hand, decreased density of the powder due to the fly ash replacement can causes segregation but there is no report on this issue. Therefore, in this research, the segregation resistance and segregation evaluation method for powder based high fluid concrete mixture are evaluated. As a result, with increased replacing ration of supplementary materials, EIS value was decreased and apparently segregation resistance was increased. However, from the compressive strength evaluation depending on height of the cylindrical specimen, it was confirmed that the different of strength difference between top and bottom part of the specimen. Thus, following research regarding vertical segregation should be studied.

  • PDF

충격반향기법을 이용한 깊은 기초의 건전도 평가(수치해석) (Integrity Evaluation of Deep Foundations by Using Impact Echo Method(Numerical Study))

  • 김동수;박연홍
    • 한국지반공학회논문집
    • /
    • 제15권2호
    • /
    • pp.139-152
    • /
    • 1999
  • 근래에 들어 구조물의 대형화에 따라 현장타설 말뚝을 하부 구조물로서 광범위하게 적용하고 있다. 그러나 현장타설 말뚝에 결함이 생기면 상부 하중에 대한 지지력 저하와 함께 침하량이 증가하게 되어 상부 구조물에 치명적인 손실을 초래할 수 있다. 따라서 비파괴시험 기법에 의한 콘크리트 말뚝의 효과적인 건전도 평가기법 개발이 중요하게 대두되고 있다. 본 연구에서는 수치해석을 통하여 콘크리트 말뚝의 건전도 평가에 이용되는 충격반향기법의 적용성을 검토하였다. 3차원 축대칭 유한요소법을 이용하여 건전한 말뚝과 현장타설 말뚝의 전형적인 결함인 병목, 공동, 불량 콘크리트를 포함하는 말뚝, 그리고 지반 및 암반위에 놓인 말뚝에 관한 해석을 수행하였다. 해석결과 현장타설 말뚝에 적용되는 충격반향기법의 적용성 평가에 있어서 유한요소법이 효과적임을 알 수 있었다.

  • PDF

Assessment of some parameters of corrosion initiation prediction of reinforced concrete in marine environments

  • Moodi, Faramarz;Ramezanianpour, Aliakbar;Jahangiri, Ehsan
    • Computers and Concrete
    • /
    • 제13권1호
    • /
    • pp.71-82
    • /
    • 2014
  • Chloride ion ingress is one of the major problems that affect the durability of concrete structures such as bridge decks, concrete pavements, and other structures exposed to harsh saline environments. Therefore, durability based design of concrete structures in severe condition has gained great significance in recent decades and various mathematical models for estimating the service life of rein-forced concrete have been proposed. In spite of comprehensive researches on the corrosion of rein-forced concrete, there are still various controversial concepts in quantitation of durability parameters such as chloride diffusion coefficient and surface chloride content. Effect of environment conditions on the durability of concrete structures is one of the most important issues. Hence, regional investigations are necessary for durability based design and evaluation of the models. Persian Gulf is one of the most aggressive regions of the world because of elevated temperature and humidity as well as high content of chloride ions in seawater. The aim of this study is evaluation of some parameters of durability of RC structures in marine environment from viewpoint of corrosion initiation. For this purpose, some experiments were carried out on the real RC structures and in laboratory. The result showed that various uncertainties in parameters of durability were existed.

콘크리트 탄산화 및 열효과에 의한 경년열화 예측을 위한 기계학습 모델의 정확성 검토 (Accuracy Evaluation of Machine Learning Model for Concrete Aging Prediction due to Thermal Effect and Carbonation)

  • 김현수
    • 한국공간구조학회논문집
    • /
    • 제23권4호
    • /
    • pp.81-88
    • /
    • 2023
  • Numerous factors contribute to the deterioration of reinforced concrete structures. Elevated temperatures significantly alter the composition of the concrete ingredients, consequently diminishing the concrete's strength properties. With the escalation of global CO2 levels, the carbonation of concrete structures has emerged as a critical challenge, substantially affecting concrete durability research. Assessing and predicting concrete degradation due to thermal effects and carbonation are crucial yet intricate tasks. To address this, multiple prediction models for concrete carbonation and compressive strength under thermal impact have been developed. This study employs seven machine learning algorithms-specifically, multiple linear regression, decision trees, random forest, support vector machines, k-nearest neighbors, artificial neural networks, and extreme gradient boosting algorithms-to formulate predictive models for concrete carbonation and thermal impact. Two distinct datasets, derived from reported experimental studies, were utilized for training these predictive models. Performance evaluation relied on metrics like root mean square error, mean square error, mean absolute error, and coefficient of determination. The optimization of hyperparameters was achieved through k-fold cross-validation and grid search techniques. The analytical outcomes demonstrate that neural networks and extreme gradient boosting algorithms outshine the remaining five machine learning approaches, showcasing outstanding predictive performance for concrete carbonation and thermal effect modeling.

교면포장용 콘크리트 슬래브의 성능평가에 대한 비교 연구 (A Comparative Study on the Performance Evaluation of Concrete Slab for Bridge Deck Overlay)

  • 이지훈;박준석;김두환
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2007년도 정기총회 및 학술발표대회
    • /
    • pp.483-486
    • /
    • 2007
  • The present study is an exploratory research concerned with evaluation of three types of high performance concrete for bridge deck applications. These include A-Type (silica fume 6%), B-Type (silica fume 6% plus fly ash 20%), C-Type (silica fume 6% plus blast-furnace slag 40%). Test results compare with Latex modified concrete (LMC) and Ordinary portland cement concrete (OPC). The results indicates that high performance concrete for bridge deck overlay shows the excellent mechanical and durability performance for LMC and OPC in case of static loading test. Analytical results are similar with experimental results. However there are relative errors of $1{\sim}4mm$ for deflection and maximum 12% for strain.

  • PDF

철근이 부식된 철근콘크리트 슬래브의 구조성능 평가 (Evaluation of Structural Performance of Reinforced Concrete Slab due to Steel Corrosion)

  • 이창복;이경언;박현수;정란
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.597-600
    • /
    • 1999
  • Recitly, the use of sea-sand is increasing in the construction due to the rapid reduction of river-sand. In that case, one of the major problem is that a sand salt in sea-sand induce the corrosion of embedded reinforcing bar in concrete. In addition, the deterioration of concrete quality arises a social problem in the durability of reinforced concrete. This research is aimed at providing the data for the control of design method of repair and rehabilitation in the reinforced concrete structure by means of the evaluation of structural performance due to corrosion.

  • PDF

전기 저항법을 이용한 콘크리트 조기 강도 판정에 관한 연구 (The Study on Earlier Evaluation of Concrete Strength Using Electric Resistance Method)

  • 김화중;이도현;윤상천;박정민;최신호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1995년도 봄 학술발표회 논문집
    • /
    • pp.130-135
    • /
    • 1995
  • We can consider that the study on early evaluation of strength of concrete is useful to raise safety of building and utility of quality control of concrete is useful to raise safety of building and utility of quality control of concrete. In this paper, was proposed to method early to predict strength of concrete with key parameters, such as Water/Cement(W/C) ratio and Sand / Aggregate(S/A) ratio. Through a series of experiment, the obtained results are summarized as follow. $\circled1$ The ratio of resistance was decteased as the increase of W/C ratio. $\circled2$ The maximum value for the ratio of resistance and compressive strength was presented in the case of 40% S/A ratio. $\circled3$ The relationship. of the ratio of resistance and compressive strength on 28days according to the change of W/C and S/A ratio is to be: $F_{28}=-0.00104R^2 + 2.263R - 935.5$ (W/C Ratio) $F_{28} = 0.007R^2 - 10.693R - 4269.1$ (S/A Ratio)

  • PDF

순수비틀림을 받는 철근콘크리트 보의 비틀림 강도 예측 (Prediction of the Torsional Strength of RC Beams Subjected to Pure Torsion)

  • 박지선;이정윤
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.247-252
    • /
    • 2002
  • The evaluation equation of torsional moment for reinforced concrete members in ACI 318-99 ignores the contribution of concrete, T$_{c}$. Several research indicates that the torsional moment of concrete is in effect, specially for the members in which the longitudinal and transverse reinforcement content is small. This paper proposes an evaluation equation of torsional moment taking into account the contribution of concrete. According to the comparison with the 66 test results, the torsion equation in ACI code underestimated or overestimated the real torsional moment of reinforced concrete beams. On the other hand, the proposed torsional equation is shown to be in a good agreement with experimental results.s.

  • PDF

구조용 경량골재 개발에 따른 경량콘크리트의 동결융해특성에 관한 연구 (Property Evaluation of the Freeze-Thawing for Lightweight Concrete with Development of Structural Lightweight Aggregates)

  • 장동일;채원규;조광현;김광일;손영현
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회 논문집(I)
    • /
    • pp.129-136
    • /
    • 1998
  • In this study, lightweight aggregates were developed to see the possible application as a structural uses. For the evaluation purpose, several testings were conducted to compare the physical characteristics between the controlled lightweight aggregates and other lightweight aggregates purchased from different sources. The tests included property changes of fresh concrete and strength characteristics of hardened concrete for both normal and high strength ranges. In addition, a experiment was performed to analyze the freezing and thawing resistance of new lightweight aggregate concrete against other lightweight aggregate concrete against other lightweight aggregate concretes with some experimental parameters such as lightweight aggregates, curing conditions, and water-cement ratio. The test showed that the new lightweight aggregate could be used structural components. Continuous study will be planned for future evaluations.

  • PDF