• 제목/요약/키워드: concircular

검색결과 35건 처리시간 0.039초

SOME RESULTS ON CONCIRCULAR VECTOR FIELDS AND THEIR APPLICATIONS TO RICCI SOLITONS

  • CHEN, BANG-YEN
    • 대한수학회보
    • /
    • 제52권5호
    • /
    • pp.1535-1547
    • /
    • 2015
  • A vector field on a Riemannian manifold (M, g) is called concircular if it satisfies ${\nabla}X^v={\mu}X$ for any vector X tangent to M, where ${\nabla}$ is the Levi-Civita connection and ${\mu}$ is a non-trivial function on M. A smooth vector field ${\xi}$ on a Riemannian manifold (M, g) is said to define a Ricci soliton if it satisfies the following Ricci soliton equation: $$\frac{1}{2}L_{\xi}g+Ric={\lambda}g$$, where $L_{\xi}g$ is the Lie-derivative of the metric tensor g with respect to ${\xi}$, Ric is the Ricci tensor of (M, g) and ${\lambda}$ is a constant. A Ricci soliton (M, g, ${\xi}$, ${\lambda}$) on a Riemannian manifold (M, g) is said to have concircular potential field if its potential field is a concircular vector field. In the first part of this paper we determine Riemannian manifolds which admit a concircular vector field. In the second part we classify Ricci solitons with concircular potential field. In the last part we prove some important properties of Ricci solitons on submanifolds of a Riemannian manifold equipped with a concircular vector field.

RIEMANNIAN SUBMANIFOLDS WITH CONCIRCULAR CANONICAL FIELD

  • Chen, Bang-Yen;Wei, Shihshu Walter
    • 대한수학회보
    • /
    • 제56권6호
    • /
    • pp.1525-1537
    • /
    • 2019
  • Let ${\tilde{M}}$ be a Riemannian manifold equipped with a concircular vector field ${\tilde{X}}$ and M a submanifold (with its induced metric) of ${\tilde{M}}$. Denote by X the restriction of ${\tilde{X}}$ on M and by $X^T$ the tangential component of X, called the canonical field of M. In this article we study submanifolds of ${\tilde{M}}$ whose canonical field $X^T$ is also concircular. Several characterizations and classification results in this respect are obtained.

ON 3-DIMENSIONAL LORENTZIAN CONCIRCULAR STRUCTURE MANIFOLDS

  • Chaubey, Sudhakar Kumar;Shaikh, Absos Ali
    • 대한수학회논문집
    • /
    • 제34권1호
    • /
    • pp.303-319
    • /
    • 2019
  • The aim of the present paper is to study the Eisenhart problems of finding the properties of second order parallel tensors (symmetric and skew-symmetric) on a 3-dimensional LCS-manifold. We also investigate the properties of Ricci solitons, Ricci semisymmetric, locally ${\phi}$-symmetric, ${\eta}$-parallel Ricci tensor and a non-null concircular vector field on $(LCS)_3$-manifolds.

RICCI SOLITONS ON RICCI PSEUDOSYMMETRIC (LCS)n-MANIFOLDS

  • Hui, Shyamal Kumar;Lemence, Richard S.;Chakraborty, Debabrata
    • 호남수학학술지
    • /
    • 제40권2호
    • /
    • pp.325-346
    • /
    • 2018
  • The object of the present paper is to study some types of Ricci pseudosymmetric $(LCS)_n$-manifolds whose metric is Ricci soliton. We found the conditions when Ricci soliton on concircular Ricci pseudosymmetric, projective Ricci pseudosymmetric, $W_3$-Ricci pseudosymmetric, conharmonic Ricci pseudosymmetric, conformal Ricci pseudosymmetric $(LCS)_n$-manifolds to be shrinking, steady and expanding. We also construct an example of concircular Ricci pseudosymmetric $(LCS)_3$-manifold whose metric is Ricci soliton.