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ON. THE CONCIRCULAR CURVATURE TENSOR
OF A CONTACT METRIC MANIFOLD

D. E. BLAIR, JEONG-SIK KiM, AND MUKUT MANI TRIPATHI

ABSTRACT. We classify N(k)-contact metric manifolds which sat-
isty Z(§,X)-Z=0,Z(,X)-R=0o0r R(§,X)-Z=0.

1. Introduction

As a generalization of locally symmetric spaces, many geometers have
considered semi-symmetric spaces and in turn their generalizations. A
Riemannian manifold M is said to be semi-symmetric if its curvature
tensor R satisfies

R(X,Y)-R=0, X,YeTM,

where R(X,Y) acts on R as a derivation. In contact geometry, S.
Tanno[12] showed that a semi-symmetric K-contact manifold MZ7+1
is locally isometric to the unit sphere $2"+1(1).

We remark that a contact metric manifold of constant curvature
is necessarily a Sasakian manifold of constant curvature +1 or is 3-
dimensional and flat (see [3] or [9] pp.98-99). A contact metric manifold
M2+ gatisfying R(X,Y)€ = 0, where ¢ is the characteristic vector field
of the contact structure, is locally isometric to E™*! x S*(4) for n > 1
and flat in dimension 3 ([3] or see [4] p.101).

In [11], D. Perrone studied contact metric manifolds satisfying R(¢,
X)- R =0 and that under additional assumptions the manifold is either
Sasakian (and of constant curvature +1) or R(X,£)¢{ = 0. Ch. Baik-
oussis and Th. Koufogiorgos[2] showed that if £ belongs to the x-nullity
distribution and if R(¢,X) - C = 0, C being the Weyl conformal cur-
vature tensor, the contact metric manifold M?"*! is locally isometric
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to S?2F1(1) or to E™*! x S™(4). This generalizes a result of Chaki and
Tarafdar[7] that a Sasakian manifold M?"*! such that R(¢, X)-C =0 is
locally isometric to S?"*1(1). B. J. Papantoniou[10] showed that a semi-
symmetric contact metric manifold M?"*1 with ¢ belonging to the (k, u)-
nullity distribution is locally isometric to S?**1(1) or to E™*! x S™(4).
Both Perrone and Papantoniou also studied R(§, X)-S = 0 where S de-
notes the Ricci tensor. Perrone showed that if £ belongs to the x-nullity
distribution and if R(&, X) - S = 0, then the contact metric manifold is
locally isometric to E™*! x §7(4) or is Sasakian-Einstein.

After the curvature tensor and the Weyl conformal curvature tensor,
the concircular curvature tensor is the next most important (1, 3)-type
curvature tensor from the Riemannian point of view. We find it inter-
esting that studying the concircular curvature tensor on contact metric
manifolds leads to new, noteworthy examples, as we will see in this pa-
per. The paper is organized as follows. Section 2 contains necessary
details about contact metric manifolds and the concircular curvature
tensor. In section 3, we give a brief account of (k, ;)-manifolds and D-
homothetic deformation. Then we construct a key example for later use.
Section 4 contains our main results. In the last section, as an applica-
tion we classify concircularly symmetric N (k)-contact metric manifolds.
Then we show the non-existence of N(k)-contact metric manifolds with
non-vanishing recurrent concircular curvature tensor.

2. Preliminaries

An odd-dimensional manifold M?"*! is said to admit an almost con-
tact structure, sometimes called a (g, &, n)-structure, if it admits a tensor
field ¢ of type (1,1), a vector field £, and a 1-form 7 satisfying

21  P=-T+n®¢ n@) =1, ¢{=0, nop=0.

The first and one of the remaining three relations in (2.1) imply the
other two relations in (2.1). An almost contact structure is said. to
be normal if the induced almost complex structure J on the product
manifold M?**t1 x R defined by

J (X, /\%) - ((pX _ e, n(X)%)

is integrable, where X is tangent to M, t the coordinate of R and A a
smooth function on M x R. Let g be a compatible Riemannian metric
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with (p,&,n), that is,

9(X,Y) = g(pX,9Y) +n(X)n(Y)
or equivalently,

9(X,pY)=—g(¢X,Y) and g(X,)=n(X)
forall X,Y € TM. Then, M becomes an almost contact metric manifold
equipped with an almost contact metric structure (¢,&,7, g).

An almost contact metric structure becomes a contact metric struc-
ture if
The 1-form 7 is then a contact form and £ is its characteristic vector
field. A normal contact metric manifold is a Sasakian manifold. An
almost contact metric manifold is Sasakian if and only if

Vxp=Ro(6,X), XeTM,
where V is Levi-Civita connection and
Ro(X, YW =g(Y\W)X —g(X,W)Y, X, Y,WeTM.

A contact metric manifold M is Sasakian if and only if the curvature
tensor R satisfies

(2.2) R(X,Y)¢ = Ro(X,Y)¢, XY e€TM.

A contact metric manifold is called a K-contact manifold if the charac-
teristic vector field £ is a Killing vector field. An almost contact metric
manifold is K-contact if and only if V& = —p. A K-contact manifold is
a contact metric manifold, while the converse is true if h = 0, where 2h
is the Lie derivative of ¢ in the characteristic direction £. A Sasakian
manifold is always a K-contact manifold. A 3-dimensional K-contact
manifold is a Sasakian manifold. Thus a 3-dimensional contact metric
manifold is a Sasakian manifold if and only if A = 0. For more details
we refer to [3].

The concircular curvature tensor Z in a Riemannian manifold (M™, g)
is defined by ([14, 15])

r
Z=R oy l)RO’

where r is the scalar curvature of M™. We observe immediately from
the form of the concircular curvature tensor that Riemannian manifolds
with vanishing concircular curvature tensor are of constant curvature.
Thus one can think of the concircular curvature tensor as a measure
of the failure of a Riemannian manifold to be of constant curvature.
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Also a necessary and sufficient condition that a Riemannian manifold be
reducible to a Euclidean space by a suitable concircular transformation
is that its concircular curvature tensor vanishes.

3. (K, p)-manifolds

It is well known that the tangent sphere bundle of a flat Riemannian
manifold admits a contact metric structure satisfying R(X,Y)¢ = 0.
([4]) On the other hand, as we have noted (equation (2.2)), on a Sasakian
manifold

R(X,Y)§=n(Y)X —n(X)Y.
As a generalization of both R(X,Y)¢ = 0 and the Sasakian case; D.
Blair, Th. Koufogiorgos and B. J. Papantoniou[5] considered the (x, p1)-
nullity condition on a contact metric manifold and gave several reasons
for studying it. The (k,u)-nullity distribution N(k,u) ([5, 10]) of a
contact metric manifold M is defined by

N(K),,tt) p— NP(K":U’)
= {W € T,M | R(X,Y)W = (kI + uh)Ro(X,Y)W}

for all XY € TM, where (s,u) € R%. A contact metric manifold
M+ with € € N(k,p) is called a (k, u)-manifold. In particular on a
(k, ) -manifold, we have '

R(X,Y) = k(n(Y)X —n(X)Y) + p(n(Y)hX — n(X)hY).

On a (s, u)-manifold k < 1. If K = 1, the structure is Sasakian (h =0
and p is indeterminant) and if Kk < 1, the (k, u)-nullity condition de-
termines the curvature of M?"*1 completely [5]. In fact, for a (, u)-
manifold, the conditions of being a Sasakian manifold, a K-contact man-
ifold, K = 1 and h = 0 are all equivalent. In a (x,p)-manifold the
covariant derivative of ¢ satisfies

Vxe = Ro(§, (I +h)X).
Moreover, we have
Q¢ =2mk€, R =(k—1)¢%,

where @ is Ricci operator. If u = 0, the (k,pu)-nullity distribution
N(k,p) is reduced to the k-nullity distribution N (k) [13], where the
k-nullity distribution N (k) of a Riemannian manifold M is defined by

N(k):p— Np(r) ={W € T,M | R(X,Y)W = sRo(X, Y)W}
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K being a constant. If £ € N(k), then we call a contact metric manifold
M an N(k)-contact metric manifold. If k = 1, an N(k)-contact metric
manifold is Sasakian and if kK = 0, an N(k)-contact metric manifold is
locally isometric to E™*! x §™(4). In [1], N(x)-contact metric manifolds
were studied in some detail. In particular, if K < 1, the scalar curvature
is 7 = 2n(2n — 2 + k). For more details we refer to [1] and [5)].

The standard contact metric structure on the tangent sphere bundle
Ty M satisfies the (k, p)-nullity condition if and only if the base manifold
M is of constant curvature. In particular if M has constant curvature
¢, then k = ¢(2 — ¢) and p = —2e¢.

We also recall the notion of a D-homothetic deformation. For a given
contact metric structure (p,&,7, g), this is the structure defined by

_ - 1 _
n = an, §=EE, o=y, g=ag+ala—1)nen,

where a is a positive constant. While such a change preserves the state
of being contact metric, K-contact, Sasakian or strongly pseudo-convex
CR, it destroys a condition like R(X,Y)¢ =0or R(X,Y){ = s(n(Y)X —
7(X)Y). However the form of the (k, u)-nullity condition is preserved
under a D-homothetic deformation with

k+a?-1 p+2a—2

R=—p@  R=

a a

Given a non-Sasakian (, ;1)-manifold M, E. Boeckx[6] introduced an
invariant

1-4
1-—

Iy =

&

and showed that for two non-Sasakian (k, u)-manifolds (M;, ¢4, &, mi, 9,
i = 1,2, we have Ips, = Iy, if and only if up to a D-homothetic deforma-
tion, the two manifolds are locally isometric as contact metric manifolds.
Thus we know all non-Sasakian (k, )-manifolds locally as soon as we
have for every odd dimension 2n + 1 and for every possible value of the
invariant I, one (k, u)-manifold (M, ¢,€,n,g) with Iny = 1. For I > —1
such examples may be found from the standard contact metric struc-
ture on the tangent sphere bundle of a manifold of constant curvature ¢
where we have [ = }fa Boeckx also gives a Lie algebra construction
for any odd dimension and value of I < —1.

Using this invariant, we now construct an example of a (2n + 1)-
dimensional N (1 — %)—contact metric manifold, n > 1.
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ExampLE 3.1. Since the Boeckx invariant for a (1 - %,0)—manif01d
is y/n > -1, we consider the tangent sphere bundle of an (n + 1)-
dimensional manifold of constant curvature c so chosen that the resulting
D-homothetic deformation will be a (1 - %,0)—manifold. That is, for
k=¢(2—c) and u = —2c we solve
1 2 -
o lonre sl _ptlen?
n a a
for a and c. The result is
1)2
L WAED
n—1
and taking ¢ and a to be these values we obtain an N (1 — %)-contact
metric manifold.

The above example will be used in Theorem 4.1.

4. N(r)-contact metric manifolds satisfying Z(¢{,X)-Z =0

First, we recall from the Introduction that a contact metric manifold
of constant curvature is necessarily a Sasakian manifold of constant cur-
vature +1 or is 3-dimensional and flat, and a contact metric manifold
M2+ gatisfying R(X,Y)¢ = 0 is locally isometric to E"*1 x S"(4) for
n > 1 and flat in dimension 3. ,

We now prove the following theorem in which Example 3.1 arises
naturally in contrast to £t x §™(4) (cf. Theorem 4.3 below).

THEOREM 4.1. A (2n+1)-dimensional N (k)-contact metric manifold
M satisfies
2(6,X)-2=0
if and only if M is locally isometric to the sphere $2*t1(1), M is locally
isometric to the Example 3.1 or M is 3-dimensional and flat.

Proof. We first note that on an N(x)-contact metric manifold M?n+1

(4.1) Z(X,Y)E = <r§ _ m> Ro(X,Y)E,
(4.2) Z2(6,X) = <n _ m:m‘)) Ro(€, X).

From the condition Z(¢,U) - Z = 0, we get
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which in view of (4.2) gives
0= (n - m) {9(U, Z(X,Y)§) = n(Z(X,Y)O)U
- g(Ua X)Z(§7 Y)§ + n(X)Z(U, Y)€ - g(U’ Y)Z(Xa §)§
+n(Y)Z(X,U)¢ —n(U)Z(X,Y)é + Z(X,Y)U}.

Equation (4.1) then gives

() (2~ (-~ s o) =0

Therefore either r = 2n(2n + 1)k or M is of constant curvature. In the
second case M is either 3-dimensional and flat, or locally isometric to
the sphere S2"*1(1).

If r = 2n(2n+1)k, recall that the scalar curvature of an N(x)-contact
metric manifold is r = 2n(2n — 2 + k). Comparing gives Kk =1 — % and
hence M is locally isometric to the Example 3.1 for n > 1 and to the
flat case if n = 1.

Conversely, the first and third cases are of constant curvature and

therefore Z = 0; in the second case x = 2n(2n ruy giving Z(,X) =

Using the fact that Z(£,X) - R denotes Z(§,X) acting on R as a
derivation, we have the following theorem as a corollary of Theorem 4.1.
THEOREM 4.2. A (2n+1)-dimensional N (k)-contact metric manifold
M satisfies
Z(¢,X)-R=0
if and only if M is locally isometric to the sphere S?"t1(1), M is locally
isometric to Example 3.1 or M is 3-dimensional and flat.

On the other hand, reversing the order of Z and R gives the following
result.

THEOREM 4.3. A (2n+1)-dimensional N (k)-contact metric manifold
M satisfies

R(§X)-Z2=0

if and only if M is locally isometric to the sphere S™+1(1) or to E™*! x
S™(4).

P'roof. The condition R (£,U) - Z = 0 implies that
=[R(0), Z(X, - Z(REV)XY)E-Z(X,R(§,U)Y)E,
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which in view of R (¢, X) = xRy (§, X) gives
0=r{g(U,Z2(X,Y))E-—n(Z(X,Y)O)U
-g9(U,X)Z(Y)E+n(X)Z(UY)E-g(UY)Z(X,£)¢€
+nMZ(X,0)E-nU)Z (X, Y)E+Z(X,Y)U}.

In view of (4.1) the previous equation yields

o (o g )] =0

Therefore, either we have k = 0 or M is of constant curvature and the
result follows.

Conversely, Z = 0 in the first case and R(£, X) = 0 in the second
case. O

5. Some applications

A Riemannian manifold is said to be concircularly symmetric if the
concircular curvature tensor Z is parallel, that is

(5.1) VZ =0.
EXAMPLE 5.1. E™*! x 8(4) is concircularly symmetric.
Now, we prove the following theorem.

THEOREM 5.2. Let M ?"*1 be a concircularly symmetric N (k)-contact
metric manifold. Then M is locally isometric to either E"™! x S™(4) or
the sphere S?"*1 (1).

Proof. Suppose the N(k)-contact metric manifold M?"*! is concir-
cularly symmetric. Then, from (5.1) it follows that R(£,X) - Z = 0.
Consequently, the result follows at once from Theorem 4.3. Ol

REMARK 5.3. We note that while Z is a concircular invariant, the
connection V is not and hence VZ = 0 is not a concircular invariant. It
would also be natural to study spaces which are concircularly equivalent
to a locally symmetric space.

The concircular curvature tensor Z in a Riemannian manifold M is
said to be recurrent if
(5.2) VZ=aQZ,

where « is an everywhere non-vanishing 1-form. Then, we prove the
following theorem.
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THEOREM 5.4. An N(k)-contact metric manifold with non-vanishing
recurrent concircular curvature tensor does not exist.

Proof. If possible, let M?"*! be an N(x)-contact metric manifold
with non-vanishing recurrent concircular curvature tensor. Then from
(5.2), we get

VxVyZ = (Xa(Y)+a (X) a (Y)) Z,
which implies that

(5.3) R(X,Y)-Z =2da(X,Y)Z.
We define a function f on M?"+! by
(5.4) f=19(z22)",

where g is the usual extension to the inner product between the tensor
fields ([8], pp.156-157). Since, Vxg = 0, from (5.2) and (5.4) it follows
that

f(Xf) ==f2Oc(X),

or,

(5.5) - Xf=fa (X).

Using (5.5), a straightforward calculation yields

(5.6) 2da (X,Y) f = (Xa(Y)-Ya(X)-a([X,Y]) f=0.

Since f is non-vanishing by assumption, the 1-form « is closed. Thus,
from (5.3) and (5.6) we get R (X,Y)-Z = 0, which in view of Theorem 4.3
and the assumption of non-vanishing Z, shows that M?"*! is locally
isometric to E™! x §7(4). But E™"l x S"(4) satisfies VZ = 0, hence
our assumption is not possible. O
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