• Title/Summary/Keyword: concepts optimization

Search Result 120, Processing Time 0.026 seconds

Energy and Exergy Analysis of a Steam Turbine Cogeneration System (증기터빈 열병합 시스템에 대한 에너지 및 엑서지 해석)

  • Cho, Sung-Chul
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1397-1405
    • /
    • 2009
  • In recent decades, exergy analysis has been holding spotlight as a useful tool in the design, assessment, optimization, and improvement of energy system. This paper presents the results of the energy and exergy analysis of a steam turbine cogeneration system for industrial complex using two efficiency concepts of conventional one and exergetic one. In order to obtain the destroyed exergy of each component, mathematical analysis is conducted by using exergy balance and the second law of thermodynamics, according as the parameters are changed, such as the ratio of returned process steam, process steam supplied, temperature and pressure of boiler and power. The computer program developed in this study can determine the efficiencies and exergy destroyed at each component of cogeneration system. As a result of this study, a component having the largest destroyed exergy was boiler. And closed and opened feedwater heater had the lowest one. The affects to the cogeneration system due to the variation of process steam flow and return rate of condensed water is shown that the total electric power efficiency(${\eta}_E$) is decreased as increasing the return rate of condensed water under constant process steam flow. As the boiler pressure is increased for the more production of electricity, the efficiency of cogeneration system was decreased.

  • PDF

Fuzzy Indexing and Retrieval in CBR with Weight Optimization Learning for Credit Evaluation

  • Park, Cheol-Soo;Ingoo Han
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2002.11a
    • /
    • pp.491-501
    • /
    • 2002
  • Case-based reasoning is emerging as a leading methodology for the application of artificial intelligence. CBR is a reasoning methodology that exploits similar experienced solutions, in the form of past cases, to solve new problems. Hybrid model achieves some convergence of the wide proliferation of credit evaluation modeling. As a result, Hybrid model showed that proposed methodology classify more accurately than any of techniques individually do. It is confirmed that proposed methodology predicts significantly better than individual techniques and the other combining methodologies. The objective of the proposed approach is to determines a set of weighting values that can best formalize the match between the input case and the previously stored cases and integrates fuzzy sit concepts into the case indexing and retrieval process. The GA is used to search for the best set of weighting values that are able to promote the association consistency among the cases. The fitness value in this study is defined as the number of old cases whose solutions match the input cases solution. In order to obtain the fitness value, many procedures have to be executed beforehand. Also this study tries to transform financial values into category ones using fuzzy logic approach fur performance of credit evaluation. Fuzzy set theory allows numerical features to be converted into fuzzy terms to simplify the matching process, and allows greater flexibility in the retrieval of candidate cases. Our proposed model is to apply an intelligent system for bankruptcy prediction.

  • PDF

Behavior Control of Autonomous Mobile Robot using Schema Co-evolution (스키마 공진화 기법을 이용한 자율이동로봇의 행동제어)

  • Sun, Joung-Chi;Byung, Jun-Hyo;Bo, Sim-Kwee
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.03a
    • /
    • pp.123-126
    • /
    • 1998
  • The theoretical foundations of GA are the Schema Theorem and the Building Block Hypothesis. In the Meaning of these foundational concepts, simple genetic algorithm(SGA) allocate more trials to the schemata whose average fitness remains above average. Although SGA does well in many applications as an optimization method, still it does not guarantee the convergence of a global optimum. Therefore as an alternative scheme, there is a growing interest in a co-evolutionary system, where two populations constantly interact and co-evolve in contrast with traditional single population evolutionary algorithms. In this paper, we propose a new design method of an optimal fuzzy logic controller using co-evolutionary concept. In general, it is very difficult to find optimal fuzzy rules by experience when the input and/or output variables are going to increase. So we propose a co-evolutionary method finding optimal fuzzy rules. Our algorithm is that after constructing two population groups m de up of rule vase and its schema, by co-evolving these two populations, we find optimal fuzzy logic controller. By applying the proposed method to a path planning problem of autonomous mobile robots when moving objects exist, we show the validity of the proposed method.

  • PDF

Automotive Body Design (차량 차체 설계)

  • Lee, Jeong-Ick;Kim, Byoun-Gon;Chung, Tae-Jin
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.5
    • /
    • pp.10-22
    • /
    • 2008
  • In an automotive body structure, a design configuration that fulfills structural requirements such as deflection, stiffness and strength is necessary for structural design and is composed of various components. The integrated design is used to obtain a minimum weight structure with optimal or feasible performance based on conflicting constraints and boundaries. The mechanical design must begin with the definition of one or more concepts for structure and specification requirements in a given application environment. Structural optimization is then introduced as an integral part of the product design and used to yield a superior design to the conventional linear one. Although finite element analysis has been firmly established and extensively used in the past, geometric and material nonlinear analyses have also received considerable attention over the past decades. Also, nonlinear analysis may be useful in the area of structural designs where instability phenomena can include critical design criteria such as plastic strain and residual deformation. This proposed approach can be used for complicated structural analysis for an integrated design process with the nonlinear feasible local flexibilities between system and subsystems.

A Study on the Evaluation of the Long-Term Avoided Generation Cost (장기 회피 발전비용 계산에 관한 연구)

  • Kim, Jong-Ok;Park, Jong-Bae;Kim, Kwang-In;Lee, Sang-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.878-882
    • /
    • 1996
  • This paper discusses the definition and concepts, approach methodologies, capable application areas in electricity business, and tentative calculation of avoided generation costs based on the Korea's official long-term generation expansion plan. The objective to evaluate avoided costs of a resource is to supply decision makers with the breakeven cost of a targeting avoided resource. For the evaluation of avoided costs of the Korea's generation system, we consider the pseudo-DSM option which has 1,000MW peak savings, load factor with 70 percent, and life-time With 25 years as the avoided resource. The DSM resource can save the fuel and capacity additions of a electric utility during its life time. The capacity and fuel savings are evaluated from the two different cashflows with and Without the DSM option, which are generated on the basis of the generation system optimization model(WASP-II), independently. The breakeven kWh costs of the DSM option over this 25-year period is projected to be 34.1[won/kWh], which is composed of generation-capacity and fuel avoided costs with 101.139[won/kW] and 17.6[won/kWh], respectively.

  • PDF

Effective simulation-based optimization algorithm for the aircraft runway scheduling problem

  • Wided, Ali;Fatima, Bouakkaz
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.4
    • /
    • pp.335-347
    • /
    • 2022
  • Airport operations are well-known as a bottleneck in the air traffic system, putting growing pressure on the world's busiest airports to schedule arrivals and departures as efficiently as possible. Effective planning and control are essential for increasing airport efficiency and reducing aircraft delays. Many algorithms for controlling the arrival/departure queuing area are handled, considering it as first in first out queues, where any available aircraft can take off regardless of its relative sequence with other aircraft. In the suggested system, this problem was compared to the problem of scheduling n tasks (plane takeoffs and landings) on a multiple machine (runways). The proposed technique decreases delays (via efficient runway allocation or allowing aircraft to be expedited to reach a scheduled time) to enhance runway capacity and decrease delays. The aircraft scheduling problem entails arranging aircraft on available runways and scheduling their landings and departures while considering any operational constraints. The topic of this work is the scheduling of aircraft landings and takeoffs on multiple runways. Each aircraft's takeoff and landing schedules have time windows, as well as minimum separation intervals between landings and takeoffs. We present and evaluate a variety of comprehensive concepts and solutions for scheduling aircraft arrival and departure times, intending to reduce delays relative to scheduled times. When compared to First Come First Serve scheduling algorithm, the suggested strategy is usually successful in reducing the average waiting time and average tardiness while optimizing runway use.

A Feasibility Study of the IMRT Optimization with Pseudo-Biologic Objective Function (유사생물학적 대상 함수를 이용한 IMRT 최적화 알고리즘 가능성에 관한 연구)

  • Yi, Byong-Yong;Cho, Sam-Ju;Ahn, Seung-Do;Kim, Jong-Hoon;Choi, Eun-Kyung;Chang, Hye-Sook;Kwon, Soo-Il
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.4
    • /
    • pp.417-424
    • /
    • 2001
  • The pseudo-biologic objective function has been designed for the IMRT optimization. The RTP Tool Box (RTB) was used for this study. The pseudo-biologic function is similar to the biological objective function in mathematical shape, but uses physical parameters. The concepts of the TCI (Target Coverage Index) and the OSI (Organ Score Index) have been introduced for the target and the normal organs, respectively. The pseudo-biologic objective function s has been defined using these TCI and OSI's. The OSI's from the pseudo-biological function showed better results than from the physical functions, while TCI's showed similar tendency. These results revealed the feasibility of the pseudo-biologic function as an IMRT objective function.

  • PDF

The Dynamics of Noise and Vibration Engineering Vibrant as ever, for years to come

  • Leuridan, Jan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.05a
    • /
    • pp.47-47
    • /
    • 2010
  • Over the past 20 years, constant progress in noise and vibration (NVH) engineering has enabled to constantly advance quality and comfort of operation and use of really any products - from automobiles to aircraft, to all kinds of industrial vehicles and machines - to the extend that for many products, supreme NVH performance has becomes part of its brand image in the market. At the same time, the product innovation agenda in the automotive, aircraft and really many other industries, has been extended very much in recent years by meeting ever more strict environmental regulations. Like in the automotive industry, the drive towards meeting emission and CO2 targets leads to very much accelerated adoption of new powertrain concepts (downsizing of ICE, hybrid-electrical...), and to new vehicle architectures and the application of new materials to reduce weight, which bring new challenges for not only maintaining but further improving NVH performance. This drives for innovation in NVH engineering, so as to succeed in meeting a product brand performance for NVH, while as the same time satisfying eco-constraints. Product innovation has also become increasingly dependent on the adoption of electronics and software, which drives for new solutions for NVH engineering that can be applied for NVH performance optimization of mechatronic products. Finally, relentless pressure to shorten time to market while maintaining overall product quality and reliability, mandates that the practice and solutions for NVH engineering can be optimally applied in all phases of product development. The presentation will first review the afore trends for product and process innovation, and discuss the challenges they represent for NVH engineering. Next, the presentation discusses new solutions for NVH engineering of products, so as to meet target brand values, while at the same time meeting ever more strict eco constraints, and this within a context of increasing adoption of electronics and controls to drive product innovation. NVH being very much defined by system level performance, these solutions implement the approach of "Model Based System Engineering" to increase the impact of system level analysis for NVH in all phases of product development: - At the Concept Phase, to be able to do business case analysis of new product concepts; to arrive at an optimized and robust product architecture (e.g. to hybrid powertrain lay-out, to optimize fuel economy); to enable target cascading, to subsystem and component level. - In Development Phase, to increase realism and productivity of simulation, so as to frontload virtual validation of components and subsystems and to further reduce reliance on physical testing. - During the final System Testing Phase, to enable subsystem testing by a combination of physical testing and simulation: using simulation models to simulate the final integration context when testing a subsystem, enabling to frontload subsystem testing before final system integration is possible. - To interconnect Mechanical, Electronical and Controls engineering, in all phases of development, by supporting model driven controls engineering (MIL, SIL, HIL). Finally, the presentation reviews examples of how LMS is implementing such new applications for NVH engineering with lead customers in Europe, Asia and US, with demonstrated benefits both in terms of shortening development cycles, and/or enabling a simulation based approach to reduce reliance on physical testing.

  • PDF

A Study on the Optimal Design of Reinforced Concrete Frames Using SUMT (SUMT 법(法)을 이용(利用)한 철근(鐵筋)콘크리트 뼈대구조물(構造物)의 최적설계(最適設計)에 관한 연구(研究))

  • Jung, Young Chae;Lee, Qyu Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.1
    • /
    • pp.27-48
    • /
    • 1984
  • This study is conserned with the optimization of reinforced concrete frames using limit state design theory. Formulations of the optimal design for reinforced concrete frame based on the limit state theory turn out to be the nonlinear programming problems which have to deal with the required steel area, the width and effective height of the beam and column section and the moment reduction factor as the design variables. The objective function is formulated as the total construction cost which considers the costs of steel, concrete and forming for the reinforced concrete frames, and the basic constraints are imposed upon both ultimate and serviciability limit state concepts. Also, the stress blocks assumpted in CP110 and Hognestad et al. theory are applied to analysis an ultimate resistant section force for the ultimate limit state and only the criteria of CP110 are used for serviciability limit state. The optimized technique which is applied to solve the nonlinear programming problems for the optimization of reinforced concrete frames is SUMT utilizing the modified Newton-Raphson method. This algorithm is used to test for the two reinforced concrete frames, and then is compared and analysized with the numerical results of reference(10) to examine its convergence, applicability and stability under the same conditions. The results of this study are discussed about the economy comparision of the optimal values for CP110 and Hognestad et al., and the applicability, stability, convergence and validity of this algorithm used herein through the numerical analyses.

  • PDF

A Study on Refined Information Generation through Classes Composition Based on Reengineering (재공학 기반의 클래스 합성을 통한 정련화된 정보 생성에 관한 연구)

  • 김행곤;한은주
    • Journal of Korea Multimedia Society
    • /
    • v.1 no.2
    • /
    • pp.239-248
    • /
    • 1998
  • Software reengineering is making various research for solutions against problem of maintain existing system. Reengineering has a meaning of development of softwares on existing systems through the reverse-engineering and the forward-engineering. It extracts classes from existing system's softwares to increase the comprehension of the system and enhance the maintenability of softwares. Most of the important concepts used in reengineering is composition that is restructuring of the existing objects from other components. The classes and clusters in storage have structural relationship with system's main components to reuse in the higher level. These are referenced as dynamic informations through structuring an architect for each of them. The classes are created by extractor, searcher and composer through representing existing object-oriented source code. Each of classes and clusters extract refined informations through optimization. New architecture is created from the cluster based on its classes' relationship in storage. This information can be used as an executable code later on. In this paper, we propose the tools, it presented by this thesis presents a new information to users through analysing, based on reengineering, Object-Oriented informations and practicing composition methodology. These composite classes will increase reusability and produce higher comprehension information to consist maintainability for existing codes.

  • PDF