• Title/Summary/Keyword: concentration measure

Search Result 1,484, Processing Time 0.033 seconds

Reduction of Oxygen Concentration in the LPCVD Polysilicon Films Deposited by $N_2$ Gas-Flow Method ($N_2$ 가스 Flow에 의한 LPCVD 방법으로 증착된 다결정 실리콘 박막의 산소농도 저하)

  • An, Seung-Jung;Jeong, Min-Ho
    • Korean Journal of Materials Research
    • /
    • v.9 no.3
    • /
    • pp.269-273
    • /
    • 1999
  • Polycrystalline silicon films are generally deposited by LPCVD, utilizing the thermal decomposition of $SiH_4$ gas. When silicon wafers are loaded into the furnace in order to reduce oxygen concentration of the films, we flow 20slm N, gas from top to bottom of the furnace, and then deposit films of $1000\AA$ thickness to measure oxygen concen­tration by SIMS. As a consequence of SIMS, we obtain oxygen concentration in films lower about 30 times than that of films deposited with 20slm $N_2$ gas-flow through the short injector in the hatch of furnace. In our long injector system, we estimate a reproducibility by uniformity, particle, and Rs of the deposited films.

  • PDF

Measuring and Decomposing Socioeconomic Inequality in Catastrophic Healthcare Expenditures in Iran

  • Rezaei, Satar;Hajizadeh, Mohammad
    • Journal of Preventive Medicine and Public Health
    • /
    • v.52 no.4
    • /
    • pp.214-223
    • /
    • 2019
  • Objectives: Equity in financial protection against healthcare expenditures is one the primary functions of health systems worldwide. This study aimed to quantify socioeconomic inequality in facing catastrophic healthcare expenditures (CHE) and to identify the main factors contributing to socioeconomic inequality in CHE in Iran. Methods: A total of 37 860 households were drawn from the Households Income and Expenditure Survey, conducted by the Statistical Center of Iran in 2017. The prevalence of CHE was measured using a cut-off of spending at least 40% of the capacity to pay on healthcare services. The concentration curve and concentration index (C) were used to illustrate and measure the extent of socioeconomic inequality in CHE among Iranian households. The C was decomposed to identify the main factors explaining the observed socioeconomic inequality in CHE in Iran. Results: The prevalence of CHE among Iranian households in 2017 was 5.26% (95% confidence interval [CI], 5.04 to 5.49). The value of C was -0.17 (95% CI, -0.19 to -0.13), suggesting that CHE was mainly concentrated among socioeconomically disadvantaged households in Iran. The decomposition analysis highlighted the household wealth index as explaining 71.7% of the concentration of CHE among the poor in Iran. Conclusions: This study revealed that CHE is disproportionately concentrated among poor households in Iran. Health policies to reduce socioeconomic inequality in facing CHE in Iran should focus on socioeconomically disadvantaged households.

Assessment and Correlation of Saline Soil Characteristics using Electrical Resistivity

  • Mustapha Maliki;Fatima Zohra Hadjadj;Nadia Laredj;Hanifi Missoum
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.205-214
    • /
    • 2023
  • Soil salinity is becoming one of the most devastating environmental hazards over the years. Soil investigation involves fast, low cost and non disturbing methods to measure soil characteristics for both construction projects as well as for agricultural use. The electrical resistivity of saline soils is greatly governed by salt concentration and the presence of moisture in soil matrix. Experimental results of this investigation highlight that there is a significant relationship between the electrical resistivity of soil samples mixed with chloride solutions (NaCl, KCl, and MgCl2) at various concentrations, and soil physical properties. Correlations represented by quadratic functions were obtained between electrical resistivity and soil characteristics, namely, water content, degree of saturation and salt concentration. This research reveals that the obtained correlations between electrical resistivity, salt concentration, water content and degree of saturation are effective for predicting the characteristics of salt affected soils in practice, which constitute a governing element in the assessment of saline lands sustaining infrastructure.

Strength & Microstructure of Class-C fly Ash Activated in Waste Glass Based Alkaline Solution

  • Sasui, Sasui;Kim, Gyu Yong;Pyeon, Su Jeong;Suh, Dong Kyun;Lee, Yae Chan;Nam, Jeong Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.136-137
    • /
    • 2021
  • The soda lime waste glass powder was dissolved in NaOH-4M solution to synthesize an alkaline activator, which was used to activate Class-C fly ash (FA). Compressive and flexural strength tests were conducted to determine the mechanical properties. Archimedes' principle was applied to measure the porosity of samples, (SEM-EDX) and XRD was used to study the microstructure and phase changes of samples. Through Inductive Coupled Plazma technique, the solution was found to increase the concentration of Si as the amount of dissolved glass powder was increased. Owing to the increased concentration of Si in an alkaline solution, the reactivity of FA was accelerated resulting in an increased strength and reduced porosity. Additionally, the dissolution of FA was improved as well as the formation of amorphous phases in the matrix was also enhances with the concentration of increased Si in an alkaline solution.

  • PDF

Improvement of Atmospheric Dispersion Model Performance by Pretreatment of Dispersion Coefficients (분산계수의 전처리에 의한 대기분산모델 성능의 개선)

  • Park, Ok-Hyun;Kim, Gyung-Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.4
    • /
    • pp.449-456
    • /
    • 2007
  • Dispersion coefficient preprocessing schemes have been examined to improve plume dispersion model performance in complex coastal areas. The performances of various schemes for constructing the sigma correction order were evaluated through estimations of statistical measures, such as bias, gross error, R, FB, NMSE, within FAC2, MG, VG, IOA, UAPC and MRE. This was undertaken for the results of dispersion modeling, which applied each scheme. Environmental factors such as sampling time, surface roughness, plume rising, plume height and terrain rolling were considered in this study. Gaussian plume dispersion model was used to calculate 1 hr $SO_2$ concentration 4 km downwind from a power plant in Boryeung coastal area. Here, measured data for January to December of 2002 were obtained so that modelling results could be compared. To compare the performances between various schemes, integrated scores of statistical measures were obtained by giving weights for each measure and then summing each score. This was done because each statistical measure has its own function and criteria; as a result, no measure can be taken as a sole index indicative of the performance level for each modeling scheme. The best preprocessing scheme was discerned using the step-wise method. The most significant factor influencing the magnitude of real dispersion coefficients appeared to be sampling time. A second significant factor appeared to be surface roughness, with the rolling terrain being the least significant for elevated sources in a gently rolling terrain. The best sequence of correcting the sigma from P-G scheme was found to be the combination of (1) sampling time, (2) surface roughness, (3) plume rising, (4) plume height, and (5) terrain rolling.

Distribution of Phytoplankton Pigments in the Korea Strait

  • Park, Mi-Ok;Moon, Chang-Ho;Yang, Han-Soeb;Park, Jeon-Sook
    • Journal of the korean society of oceanography
    • /
    • v.34 no.2
    • /
    • pp.95-112
    • /
    • 1999
  • To investigate a phytoplankton community structure and its biomass distribution in the Korea Strait, phytoplankton pigments were quantitatively measured by HPLC method, with hydro-graphic conditions in August and October, 1996. The measured chi. a concentrations were in the range of 7.1-1,280.7 ng/1. Horizontal distribution pattern of chi. a in summer (August) was very different from that of autumn (October). High concentration of chi. a occurred near the coast with relatively low salinity (< 33%). Vertically, the highest concentrations of pigments at most of the stations were found near the surface and above the thermocline. The maximum concentration of chi. a in October was four times higher than in August. It was notable to measure relatively high concentration of chi. b up to 190.8 ng/1 in the study area, since chi. bcontaining green algae and prochlophytes have been ignored because of their minute size and sensitivity to common preservatives. Major carotenoids detected were fucoxanthin, zeaxanthin, 19'-hexanoyloxyfucoxanthin, and prasinoxanthin. Diatoms were the dominant group with secondary important groups as pryrnnesiophytes and cyanobacteria for the biomass of phytoplankton for both cruises. The dominant species of diatoms in summer were Thalassiosira sp. and Chaetoceros peruvianus. As minor groups, prasinophytes, crysophytes, and cryptophytes were confirmed by their marker pigments and dinoflgellates by microscopical observation. Degradation products of chi. a was minor. Interestingly, at 200 m depth of St A4, the deepest station in the western channel of the Korea Strait, substantial amounts of chi. a including fucoxanthin, 19'-hexanoyloxyfucoxanthin, chi. b, and degradation products of chi. a was measured from both cruises. Higher concentration (2-3 times) of those pigments were detected from samples in summer than in autumn. Small decrease in concentration of phosphate at this depth of St. A4 was also observed. It suggested that this bottom cold water was transported from the subsurface water with biomass of active phytoplankton, which was sunk and flowed southward.

  • PDF

Analysis of Single Crystal Silicon Solar Cell Doped by Using Atmospheric Pressure Plasma

  • Cho, I-Hyun;Yun, Myoung-Soo;Son, Chan-Hee;Jo, Tae-Hoon;Kim, Dong-Hae;Seo, Il-Won;Roh, Jun-Hyoung;Lee, Jin-Young;Jeon, Bu-Il;Choi, Eun-Ha;Cho, Guang-Sup;Kwon, Gi-Chung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.357-357
    • /
    • 2012
  • The doping process of the solar cell has been used by furnace or laser. But these equipment are so expensive as well as those need high maintenance costs and production costs. The atmospheric pressure plasma doping process can enable to the cost reduction. Moreover the atmospheric pressure plasma can do the selective doping, this means is that the atmospheric pressure plasma regulates the junction depth and doping concentration. In this study, we analysis the atmospheric pressure plasma doping compared to the conventional furnace doping. the single crystal silicon wafer doped with dopant forms a P-N junction by using the atmospheric pressure plasma. We use a P type wafer and it is doped by controlling the plasma process time and concentration of dopant and plasma intensity. We measure the wafer's doping concentration and depth by using Secondary Ion Mass Spectrometry (SIMS), and we use the Hall measurement because of investigating the carrier concentration and sheet resistance. We also analysis the composed element of the surface structure by using X-ray photoelectron spectroscopy (XPS), and we confirm the structure of the doped section by using Scanning electron microscope (SEM), we also generally grasp the carrier life time through using microwave detected photoconductive decay (u-PCD). As the result of experiment, we confirm that the electrical character of the atmospheric pressure plasma doping is similar with the electrical character of the conventional furnace doping.

  • PDF

Effects of dietary cation and anion difference on eating, ruminal function and plasma leptin in goats under tropical condition

  • Nguyen, Thiet;Chanpongsang, Somchai;Chaiyabutr, Narongsak;Thammacharoen, Sumpun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.6
    • /
    • pp.941-948
    • /
    • 2020
  • Objective: This study was carried out to determine the effects of elevated dietary cation and anion difference (DCAD) on dry matter intake (DMI) and ruminal fermentation pattern in lactating dairy goats under tropical conditions. Methods: Ten dairy goats were divided into two groups of five animals each. The groups received diets at different DCAD levels, either a control diet (22.81 mEq/100 g dry matter [DM], DCAD-23) or a DCAD-39 diet (39.08 mEq/100 g DM, DCAD-39). After parturition, DMI and water intake were recorded daily. Ruminal fluid and urine were collected, and nutrient digestibility measurements were carried out at 8th weeks postpartum (PP-8). Blood samples were collected at PP-4 and PP-8 to measure plasma leptin. Results: Dry matter intake/body weight (DMI/BW) at PP-8 of the animals fed the DCAD-39 diet was significantly higher than those fed with DCAD-23 diet (p<0.05). Animals fed with DCAD-39 consumed more water than those fed DCAD-23 over 24 h, particularly at night (p<0.05). Ruminal pH, acetate concentration, and urinary allantoin excretion increased with the DCAD-39 diet, whereas ruminal butyrate concentration was lower with the DCAD-39 diet. On the other hand, other ruminal parameters, such as total volatile fatty acid concentration, propionate molar proportion and acetate/propionate average ratio, were not affected by increased DCAD supplementation. Apparent digestibility was improved by increased DCAD supplementation. Plasma leptin concentration was higher with DCAD supplementation. Conclusion: When feeding goats with DCAD-39 under tropical conditions, an increase in DMI was associated with improved apparent digestibility of nutrients, ruminal fermentation and microbial protein synthesis. An increase in plasma leptin concentration could not explain the effect of high DCAD on DMI.

Identifications of Source Locations for Atmospheric Total Gaseous Mercury Using Hybrid Receptor Models (Hybrid receptor model을 이용한 대기 중 총 가스상 수은의 오염원 위치 추정 연구)

  • Lee, Yong-Mi;Yi, Seung-Muk;Heo, Jong-Bae;Hong, Ji-Hyoung;Lee, Suk-Jo;Yoo, Chul
    • Journal of Environmental Science International
    • /
    • v.19 no.8
    • /
    • pp.971-981
    • /
    • 2010
  • The objectives of this study were to measure ambient total gaseous mercury (TGM) concentrations in Seoul, to analyze the characteristics of TGM concentration, and to identify of possible source areas for TGM using back-trajectory based hybrid receptor models like PSCF (Potential Source Contribution Function) and RTWC (Residence Time Weighted Concentration). Ambient TGM concentrations were measured at the roof of Graduate School of Public Health building in Seoul for a period of January to October 2004. Average TGM concentration was $3.43{\pm}1.17\;ng/m^3$. TGM had no notable pattern according to season and meteorological phenomena such as rainfall, Asian dust, relative humidity and so on. Hybrid receptor models incorporating backward trajectories including potential source contribution function (PSCF) and residence time weighted concentration (RTWC) were performed to identify source areas of TGM. Before hybrid receptor models were applied for TGM, we analysed sensitivities of starting height for HYSPLIT model and critical value for PSCF. According to result of sensitivity analysis, trajectories were calculated an arrival height of 1000 m was used at the receptor location and PSCF was applied using average concentration as criterion value for TGM. Using PSCF and RTWC, central and eastern Chinese industrial areas and the west coast of Korea were determined as important source areas. Statistical analysis between TGM and GEIA grided emission bolsters the evidence that these models could be effective tools to identify possible source area and source contribution.

Development of Concentration Control System for Ni-W Alloy Plating Solution (니켈-텅스텐 합금 도금 공정액 농도 제어 시스템 개발)

  • Kong, Jung-Shik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.273-279
    • /
    • 2016
  • This paper deals with a control system with a concentration sensor for Ni-W alloy plating solutions. The printed circuit board market has increased with the development of the electronics industry. Gold consumption has also increased dramatically. Various studies of composite plating solutions have been conducted because of the expense of gold. In comparison, the development of sensors capable of measuring a composite plating solution in real-time is still insufficient. Furthermore, there are few systems that can measure and control the concentration of the solution precisely. This study developed a sensor and system to control the concentration of composite plating solution accurately. The sensors were developed based on a spectrophotometric method and a feedback control method was applied in this system.