DOI QR코드

DOI QR Code

Assessment and Correlation of Saline Soil Characteristics using Electrical Resistivity

  • Mustapha Maliki (Construction, Transport & Protection of the Environment Laboratory (LCTPE) University Abdelhamid Ibn Badis) ;
  • Fatima Zohra Hadjadj (Construction, Transport & Protection of the Environment Laboratory (LCTPE) University Abdelhamid Ibn Badis) ;
  • Nadia Laredj (Construction, Transport & Protection of the Environment Laboratory (LCTPE) University Abdelhamid Ibn Badis) ;
  • Hanifi Missoum (Construction, Transport & Protection of the Environment Laboratory (LCTPE) University Abdelhamid Ibn Badis)
  • Received : 2022.10.17
  • Accepted : 2023.01.16
  • Published : 2023.08.31

Abstract

Soil salinity is becoming one of the most devastating environmental hazards over the years. Soil investigation involves fast, low cost and non disturbing methods to measure soil characteristics for both construction projects as well as for agricultural use. The electrical resistivity of saline soils is greatly governed by salt concentration and the presence of moisture in soil matrix. Experimental results of this investigation highlight that there is a significant relationship between the electrical resistivity of soil samples mixed with chloride solutions (NaCl, KCl, and MgCl2) at various concentrations, and soil physical properties. Correlations represented by quadratic functions were obtained between electrical resistivity and soil characteristics, namely, water content, degree of saturation and salt concentration. This research reveals that the obtained correlations between electrical resistivity, salt concentration, water content and degree of saturation are effective for predicting the characteristics of salt affected soils in practice, which constitute a governing element in the assessment of saline lands sustaining infrastructure.

Keywords

References

  1. C. Zorb, C.-M. Geilfus, and K.-J. Dietz, Plant Biol., 2019, 21(S1), 31-38. https://doi.org/10.1111/plb.12884
  2. M. M. Bessaim, H. Missoum, K. Bendani, N. Laredj, and M. S. Bekkouche, Chemosphere, 2020, 253, 126688.
  3. F. Mostefa, N. Laredj, M. Maliki, and H. Missoum, Euro-Mediterr. J. Environ. Integr., 2022, 7, 119-130. https://doi.org/10.1007/s41207-022-00290-x
  4. J. W. Hopmans, A. S. Qureshi, I. Kisekka, R. Munns, S. R. Grattan, P. Rengasamy, A. Ben-Gal, S. Assouline, M. Javaux, P. S. Minhas, P. A. C. Raats, T. H. Skaggs, G. Wang, Q. De Jong van Lier, H. Jiaol, R. S. Lavado, N. Lazarovitch, B. Li, and E. Taleisnik, Adv. Agron., 2021, 169, 1-191. https://doi.org/10.1016/bs.agron.2021.03.001
  5. K. Ivushkin, H. Bartholomeus, A. K. Bregt, A. Pulatov, B. Kempen, and L. D. Sousa, Remote Sens. Environ., 2019, 231, 111260.
  6. F. Tian, M. Hou, Y. Qiu, T. Zhang, and Y. Yuan, Geoderma, 2020, 357, 113961.
  7. A. Singh, Soil Use Manag., 2022, 38(1), 39-67. https://doi.org/10.1111/sum.12772
  8. S. Aydemir and H. Sunger, Afr. J. Biotechnol., 2011, 10(69), 115571-115577. https://doi.org/10.5897/AJB11.2775
  9. J. M. Jesus, A. S. Danko, A. Fiuza, and M.-T. Borges, Environ. Sci. Pollut. Res., 2015, 22, 6511-6525. https://doi.org/10.1007/s11356-015-4205-4
  10. F. Z. Hadjadj, N. Laredj, M. Maliki, H. Missoum, and K. Bendani, Geotech. Geol. Eng., 2022, 40, 4159-4170. https://doi.org/10.1007/s10706-022-02147-0
  11. F. Wang, Z. Shi, A. Biswas, S. Yang, and J. Ding, Geoderma, 2020, 365, 114211.
  12. S. Jayasekera, Electrochim. Acta, 2015, 181, 39-47. https://doi.org/10.1016/j.electacta.2015.06.064
  13. M. Fukue, T. Minato, H. Horibe, and N. Taya, Eng. Geol., 1999, 54(1-2), 43-53. https://doi.org/10.1016/S0013-7952(99)00060-5
  14. M. Kang and J. S. Lee, Cold Reg. Sci. Technol., 2015, 113, 1-11. https://doi.org/10.1016/j.coldregions.2015.02.004
  15. H. Rasul, R. Earon, and B. Olofsson, B., Water Air Soil Pollut., 2018, 229(11), 358.
  16. C. Lyu, Q. Sun, W. Zhang, and S. Hao, J. Appl. Geophy., 2019, 170, 103843.
  17. P. Cosenza, E. Marmet, F. Rejiba, Y. J. Cui, A. Tabbagh, and Y. Charlery, J. Appl. Geophy., 2006, 60(3-4), 165-178. https://doi.org/10.1016/j.jappgeo.2006.02.003
  18. S. B. S. Osman, M. N. Fikri, and F. I. Siddique, Pertanika J. Sci. Technol., 2014, 22(1), 139-152.
  19. M. H. Z. Abidin, R. Saad, F. Ahmad, D. C. Wijeyesekera, and M. F. T. Baharuddin, Soil Mech. Found. Eng., 2014, 51, 117-125. https://doi.org/10.1007/s11204-014-9264-x
  20. B. Alsharari, A. Olenko, and H. Abuel-Naga, Expert Syst. Appl., 2020, 141, 112966.
  21. K. O. Ozegin and S. O. Salufu, NRIAG J. Astron. Geophys., 2022, 11(1), 69-80. https://doi.org/10.1080/20909977.2021.2005336
  22. S. A. Shahid, M. Zaman, and L. Heng, Soil salinity: Historical perspectives and a world overview of the problem, Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques, Springer, Cham, 2018.
  23. G. E. Archie, Trans., 1942, 146(1), 54-62. https://doi.org/10.2118/942054-G
  24. P. K. Kolay, S. G. Burra, and S. Kumar, Int. J. Geotech. Eng., 2018, 12(1), 13-19. https://doi.org/10.1080/19386362.2016.1239378
  25. V. Gingine, A. S. Dias, and R. Cardoso, Procedia Eng., 2016, 143, 803-810. https://doi.org/10.1016/j.proeng.2016.06.130
  26. A. A. Hassan and D. G. Toll, Geotechnical Engineering for Infrastructure and Development, 2015, 3395-3400.
  27. M. Mostafa, M. B. Anwar, and A. Radwan, HBRC J., 2018, 14(3), 379-384. https://doi.org/10.1016/j.hbrcj.2017.07.001
  28. A. Bezzar and F. Ghomari, Transp. Porous Med., 2013, 97(2), 147-159. https://doi.org/10.1007/s11242-012-0115-9
  29. J. K. Mitchell, Geotechnique, 1991, 41(3), 299-340. https://doi.org/10.1680/geot.1991.41.3.299
  30. J. K. Mitchell and K. Soga, Fundamentals of Soil Behavior, 3rd Edition, John Wiley & Sons, Hoboken, 2005.
  31. Y. Bai, D. Pan, W.-J. Cai, X. He, D. Wang, B. Tao, and Q. Zhu, J. Geophys. Res. Oceans, 2013, 118(1), 227-243. https://doi.org/10.1029/2012JC008467
  32. G. Kibria, S. Hossain, and M. S. Khan, J. Appl. Geophy., 2018, 152, 150-160. https://doi.org/10.1016/j.jappgeo.2018.03.011
  33. R. Cardoso and A. S. Dias, Eng. Geol., 2017, 226, 1-11. https://doi.org/10.1016/j.enggeo.2017.04.007
  34. ASTM, C518-91, Standard test method for steady-state heat flux measurements and thermal transmission properties by means of the heat flow meter apparatus, Annual Book of Standards, American Society for Testing and Materials, Philadelphia, 1991, 04.06, 153-164.
  35. A. P. Aizebeokhai, Sci. Res. Essays, 2010, 5(23), 3592-3605.
  36. F. A. Swaid, WIT Trans. Ecol. Environ., 2009, 127, 363-375. https://doi.org/10.2495/RAV090321
  37. D. Zhang, L. Chen, and S. Liu, J. Cent. South Univ., 2012, 19, 2991-2998. https://doi.org/10.1007/s11771-012-1368-8
  38. D. L. Corwin and S. M. Lesch, Agron. J., 2003, 95(3), 455-471. https://doi.org/10.2134/agronj2003.4550
  39. L. Brillante, B. Bois, O. Mathieu, V. Bichet, D. Michot, and J. Leveque, J. Hydrol., 2014, 516, 56-66. https://doi.org/10.1016/j.jhydrol.2014.01.052
  40. H. Jusoh, S. Baharom, and S. Osman, Indian J. Sci. Technol., 2017, 10(6), 1-5.
  41. R. M. Hen-Jones, P. N. Hughes, R. A. Stirling, S. Glendinning, J. E. Chambers, D. A. Gunn, and Y. J. Cui, Acta Geotech., 2017, 12, 1159-1173. https://doi.org/10.1007/s11440-017-0523-7
  42. J. A. Acosta, M. Gabarron, M. Martinez-Segura, S. Martinez-Martinez, A. Faz, A. Perez-Pastor, M. D. Gomez-Lopez, and R. Zornoza, Sensors, 2022, 22(4), 1365.
  43. S. Kumar and W.-L. Yong, Soil Sediment Contam., 2002, 11(1), 71-89. https://doi.org/10.1080/20025891106709
  44. G. Kibria and S. Hossain, Waste Manag., 2015, 39, 197-204. https://doi.org/10.1016/j.wasman.2015.02.015
  45. M. L. M. Pandey and S. K. Shukla, J. Appl. Geophys., 2018, 155, 208-216. https://doi.org/10.1016/j.jappgeo.2018.06.016
  46. A. I. Pozdnyakov, L. A. Pozdnyakova, and L. O. Karpachevskii, Eurasian Soil Sc., 2006, 39(Suppl 1), S78-S83. https://doi.org/10.1134/S1064229306130138
  47. Z. Abu-Hassanein, C. Benson, and L. Boltz, J. Geotech. Eng., 1996, 122(5), 397-406. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:5(397)