• Title/Summary/Keyword: concave polygon

Search Result 18, Processing Time 0.024 seconds

A critical review of handling the concave polygons in elementary 4th grade mathematics textbooks according to 2009 revised curriculum (2009 개정 교육과정에 따른 초등학교 4학년 수학 교과서에서의 오목다각형 취급에 대한 비판적 검토)

  • Choi, Jong Hyeon;Choi, Kyoung A;Park, Kyo Sik
    • Journal of the Korean School Mathematics Society
    • /
    • v.17 no.4
    • /
    • pp.613-627
    • /
    • 2014
  • Elementary textbook ${\ll}Mathematics\;4-2{\gg}$ first published in 2014 according to the 2009 elementary mathematics curriculum has been dealing with concave polygons which were not treated in elementary textbooks according to the previous curriculum. However, n the present paper, to show that there is a need to reconsider the handling of the concave polygons, after discussions about the polygon, problems in handling the concave polygons were discussed in next two viewpoints: Does 2009 elementary mathematics curriculum allow handling of the concave polygons? are there any logical leaps in handling of the concave polygon? And the following reasons to reconsider the handling of the concave polygons are presented as conclusions. First, there was no process of publicizing the handling of the concave polygon. Second, the evidences that will justify the handling of the concave polygon can not be found in 2009 elementary mathematics curriculum. Third, there are logical leaps in the handling of the concave polygons. Fourth, there is no consistency in handling the concave polygons.

  • PDF

Inductive study on the re-organization of regular polygons in school mathematics (학교수학에서 정다각형의 재구조화에 대한 귀납적 연구)

  • Hong, Dong Hwa;Suh, Bo Euk;Park, Eun Ik;Yoo, Seong Hoon;Choi, Eun Seo
    • East Asian mathematical journal
    • /
    • v.31 no.4
    • /
    • pp.483-503
    • /
    • 2015
  • While some studies have examined the concave and convex regular polygons respectively, very little work has been done to integrate and restructure polygon shapes. Therefore, this study aims to systematically reclassify the regular polygons on the through a comprehensive analysis of previous studies on the convex and concave regular polygons. For this study, the polygon's consistency with respect to the number of sides and angles was examined. Second, the consistency on the number of diagonals was also examined. Third, the size of the interior and exterior angels of regular polygons was investigated in order to discover the consistent properties. Fourth, the consistency concerning the area in regular polygons was inspected. Last, the consistency of the central figure number in the "k-th" regular polygons was examined. Given these examinations, this study suggests a way to create a concave regular polygon from a convex regular polygon.

NUMERICAL SIMULATION OF CONVEX AND CONCAVE TUBES WITH CONSIDERATION OF STRAIN RATE SENSITIVITY

  • Ye, B.W.;Oh, S.;Cho, Y.B.;Sin, H.C.
    • International Journal of Automotive Technology
    • /
    • v.8 no.2
    • /
    • pp.193-201
    • /
    • 2007
  • The present paper deals with the application of the explicit finite element code, PAM-CRASH, to simulate the crash behavior of steel thin-walled tubes with various cross-sections subjected to axial loading. An isotropic elastic, linear strain-hardening material model was used in the finite element analysis and the strain-rate sensitivity of mild steel was modeled by using the Cowper-Symonds constitutive equation with modified coefficients. The modified coefficients were applied in numerical collapse simulations of 11 types of thin-walled polygon tubes: 7 convex polygon tubes and 4 concave polygon tubes. The results show that the thin hexagonal tube and the thick octagonal tube showed relatively good performance within the convex polygon tubes. The crush strengths of the hexagonal and octagonal tubes increased by about 20% and 25% from the crush strength of the square tube, respectively. Among the concave tubes, the I-type tube showed the best performance. Its crush strength was about 50% higher than the crush strength of the square tube.

DETECTION AND COUNTING OF FLOWERS BASED ON DIGITAL IMAGES USING COMPUTER VISION AND A CONCAVE POINT DETECTION TECHNIQUE

  • PAN ZHAO;BYEONG-CHUN SHIN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.27 no.1
    • /
    • pp.37-55
    • /
    • 2023
  • In this paper we propose a new algorithm for detecting and counting flowers in a complex background based on digital images. The algorithm mainly includes the following parts: edge contour extraction of flowers, edge contour determination of overlapped flowers and flower counting. We use a contour detection technique in Computer Vision (CV) to extract the edge contours of flowers and propose an improved algorithm with a concave point detection technique to find accurate segmentation for overlapped flowers. In this process, we first use the polygon approximation to smooth edge contours and then adopt the second-order central moments to fit ellipse contours to determine whether edge contours overlap. To obtain accurate segmentation points, we calculate the curvature of each pixel point on the edge contours with an improved Curvature Scale Space (CSS) corner detector. Finally, we successively give three adaptive judgment criteria to detect and count flowers accurately and automatically. Both experimental results and the proposed evaluation indicators reveal that the proposed algorithm is more efficient for flower counting.

Development of an Efficient Algorithm for the Minimum Distance Calculation between two Polyhedra in Three-Dimensional Space (삼차원 공간에서 두 다면체 사이의 최소거리 계산을 위한 효율적인 알고리즘의 개발)

  • 오재윤;김기호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.11
    • /
    • pp.130-136
    • /
    • 1998
  • This paper develops an efficient algorithm for the minimum distance calculation between two general polyhedra(convex and/or concave) in three-dimensional space. The polyhedra approximate objects using flat polygons which composed of more than three vertices. The algorithm developed in this paper basically computes minimum distance between two polygons(one polygon per object) and finds a set of two polygons which makes a global minimum distance. The advantage of the algorithm is that the global minimum distance can be computed in any cases. But the big disadvantage is that the minimum distance computing time is rapidly increased with the number of polygons which used to approximate an object. This paper develops a method to eliminate sets of two polygons which have no possibility of minimum distance occurrence, and an efficient algorithm to compute a minimum distance between two polygons in order to compensate the inherent disadvantage of the algorithm. The correctness of the algorithm is verified not only comparing analytically calculated exact minimum distance with one calculated using the developed algorithm but also watching a line which connects two points making a global minimum distance of a convex object and/or a concave object. The algorithm efficiently finds minimum distance between two convex objects made of 224 polygons respectively with a computation time of about 0.1 second.

  • PDF

Textbook analysis on the application of concave polygons in congruence and symmetrical teaching and learning (합동과 대칭의 교수학습에서 오목다각형의 활용에 대한 교과서 분석)

  • Kang, Yunji
    • Communications of Mathematical Education
    • /
    • v.38 no.2
    • /
    • pp.215-230
    • /
    • 2024
  • Congruences and symmetry are familiar concepts that can be encountered in everyday life. In order to effectively understand and acquire these concepts, the role of appropriate visual examples is important. This analysis examined various visual examples used in the process of learning the concepts of congruence and symmetry in elementary mathematics textbooks and focused on the use of convex polygons and concave polygons. As a result of the analysis, various types of polygons were used as visual examples for teaching and learning of congruence and symmetry in textbooks. The frequency of use of concave polygons was higher in the order of congruence, line symmetry, and point symmetry, and it was confirmed that it was used more frequently in the process of exploring properties than in the introduction of the concept. Based on these results, a plan to utilize concave polygons in teaching and learning of congruence and symmetry was sought.

The Study on Extension of Regular Polygon Using Cabri Geometry II (기하프로그램을 활용한 정다각형 외연의 확장에 대한 연구)

  • Suh, Bo-Euk
    • Journal of the Korean School Mathematics Society
    • /
    • v.15 no.1
    • /
    • pp.183-197
    • /
    • 2012
  • Geometry having long history of mathematics have important role for thinking power and creativity progress in middle school. The regular polygon included in plane geometry was mainly taught convex regular polygon in elementary school and middle school. In this study, we investigated the denotation's extension of regular polygon by mathematical basic knowledge included in school curriculum. For this research, first, school mathematical knowledge about regular polygon was analyzed. And then, basic direction of research was established for inquiry. Second, based on this analysis inductive inquiry activity was performed with research using geometry software(Cabri Geometry II). Through this study the development of enriched learning material and showing the direction of geometry research is expected.

  • PDF

Development on the Automated Process System for Cold Forging of Non-axisymmetric Parts (비축대칭 제품의 냉간단조 공정설계 시스템 개발)

  • 이봉규;조해용;권혁홍
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.527-530
    • /
    • 1997
  • An automated process planning system for cold forging of non-axisymmetric parts of comparatively simple shape was developed in this study. Programs for the system have been written with Visual LISP in the AutoCAD using a personal computer and are composed of four main modules such as input module, shape cognition and shape expression module, material diameter determination module and process planning module. The design rules and knowledges for th system are extracted from the plasticity theories. handbook, relevant reference and empirical knowledge of field experts. Generally, in forging, only front view is needed for expression of axisymmetric parts, but non-axisymmetric parts are needed both front view and plane. At the plane, this system cognizes the external shape of non-axisymmetric parts - number of sides of regular polygon and radius of a circle circumscribing the polygon of n sides. At the front view, the system perceives diameter of axisymmetric portions and hight of primitive geometries such as polygon, cylinder, cone, concave, convex, etc.

  • PDF

A Study on the Automated Process Planning System for Cold Forging of Non-axisymmetric Parts (비축대칭 제품의 냉간단조 공정설계시스템에 관한 연구)

  • Lee, Bong-Gyu;Jo, Hae-Yong;Gwon, Hyeok-Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.2
    • /
    • pp.195-202
    • /
    • 2002
  • An automated process planning system for cold forging of non-axisymmetric parts of comparatively simple shape was developed in this study. Programs for the system have been written with Visual LISP in the AutoCAD using a personal computer and are composed of four main modules such as input module, shape cognition and shape expression module, material diameter determination module and process planning module. The design rules and knowledges for the system are extracted from the plasticity theories, handbook, relevant reference and empirical knowledge of field experts. Generally, in forging, only front view is needed for expression of axisymmetric parts, but non-axisymmetric parts need front and plane view. At the plane, this system cognizes the external shape of non-axisymmetric, parts - number of sides of regular polygon and radius of a circle circumscribing the polygon of n sides. At the front view, the system perceives diameter of axisymmetric portions and height of primitive geometries such as polygon, cylinder, cone, concave, convex, etc.

Development of an efficient algorithm for the minimum distance calculation between general polyhedra (일반적인 다면체 사이의 최소거리 계산을 위한 효율적인 알고리즘의 계산)

  • 임준근;오재윤;김기호;김승호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1876-1879
    • /
    • 1997
  • This paper developes an efficient algorithm for the minimum distance calculation between general polyhedra(convex and/or concave). The polyhedron approximates and object using flat polygons which composed of more than three veritices. The algorithm developed in this paper basically computes minimun distance betwen two convex polygons and finds a set of polygons whcih makes a global minimum distance. The advantage of the algorithm is that the global minimum distance can be computed in any cases. But the big disadvantage is that minimum distance computing time is repidly increased with the number of polygons which used to approximate an object. This paper developes a method to eliminate unnecessary sets of polygons, and an efficinet algorithm to compute a minimum distance between two polygons in order to compensate the inherent disadvantage of the algorithm. It takes only a few times iteration to find minimum distance for msot polygons. The correctness of the algortihm are visually tested with a line which connects two points making a global minimum distance of simple convex object(box) and concave object(pipe). The algorithm can find minimum distance between two convex objects made of about 200 polygons respectively less than a second computing time.

  • PDF