• Title/Summary/Keyword: computing model

Search Result 3,371, Processing Time 0.029 seconds

The prediction of appearance of jellyfish through Deep Neural Network (심층신경망을 통한 해파리 출현 예측)

  • HWANG, CHEOLHUN;Han, Myung-Mook
    • Journal of Internet Computing and Services
    • /
    • v.20 no.5
    • /
    • pp.1-8
    • /
    • 2019
  • This paper carried out a study to reduce damage from jellyfish whose population has increased due to global warming. The emergence of jellyfish on the beach could result in casualties from jellyfish stings and economic losses from closures. This paper confirmed from the preceding studies that the pattern of jellyfish's appearance is predictable through machine learning. This paper is an extension of The prediction model of emergence of Busan coastal jellyfish using SVM. In this paper, we used deep neural network to expand from the existing methods of predicting the existence of jellyfish to the classification by index. Due to the limitations of the small amount of data collected, the 84.57% prediction accuracy limit was sought to be resolved through data expansion using bootstraping. The expanded data showed about 7% higher performance than the original data, and about 6% better performance compared to the transfer learning. Finally, we used the test data to confirm the prediction performance of jellyfish appearance. As a result, although it has been confirmed that jellyfish emergence binary classification can be predicted with high accuracy, predictions through indexation have not produced meaningful results.

Cyber threat Detection and Response Time Modeling (사이버 위협 탐지대응시간 모델링)

  • Han, Choong-Hee;Han, ChangHee
    • Journal of Internet Computing and Services
    • /
    • v.22 no.3
    • /
    • pp.53-58
    • /
    • 2021
  • There is little research on actual business activities in the field of security control. Therefore, in this paper, we intend to present a practical research methodology that can contribute to the calculation of the size of the appropriate input personnel through the modeling of the threat information detection response time of the security control and to analyze the effectiveness of the latest security solutions. The total threat information detection response time performed by the security control center is defined as TIDRT (Total Intelligence Detection & Response Time). The total threat information detection response time (TIDRT) is composed of the sum of the internal intelligence detection & response time (IIDRT) and the external intelligence detection & response time (EIDRT). The internal threat information detection response time (IIDRT) can be calculated as the sum of the five steps required. The ultimate goal of this study is to model the major business activities of the security control center with an equation to calculate the cyber threat information detection response time calculation formula of the security control center. In Chapter 2, previous studies are examined, and in Chapter 3, the calculation formula of the total threat information detection response time is modeled. Chapter 4 concludes with a conclusion.

Analysis of whether the feeling of relative deprivation is shown in the comments of the Luxury Howl YouTube video - Focusing on modern sentiment analysis using TF-IDF, Word2vec, LDA and LSTM - (명품 하울 유튜브 영상 댓글에 나타난 상대적 박탈감 여부와 특징 분석 - TF-IDF, Word2vec, LDA, LSTM을 이용한 현대인의 감정 분석을 중심으로 -)

  • Choi, Jung Min;Oh, Hayoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.3
    • /
    • pp.355-360
    • /
    • 2021
  • Recently Youtube has been more popular. As many studies show the comparative deprivation of the Social Medeia, this study looks into whether the comparative deprivation is expressed on the YouTube comments. It focuses on the Luxury Haul contents, videos about huge amounts of luxurious products, of which Youtubers'economic feature are demonstrative. The comments of the videos are analyzed with LDA TF-IDF and Word2Vec. Additionally, the comments were classified into positive and negative groups by the LSTM model as well. As a result of the study, even though many comments turned out positive, the negative keywords were indicated related to comparative deprivation. Also it was found that the viewers compared themselves with Youtubers. In particular, some YouTubers are more criticized if they are younger or does not seem to afford the luxurious products themselves. This study suggests that the users express the comparative deprivation on YouTube as well like on the other Social Media.

Store Sales Prediction Using Gradient Boosting Model (그래디언트 부스팅 모델을 활용한 상점 매출 예측)

  • Choi, Jaeyoung;Yang, Heeyoon;Oh, Hayoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.2
    • /
    • pp.171-177
    • /
    • 2021
  • Through the rapid developments in machine learning, there have been diverse utilization approaches not only in industrial fields but also in daily life. Implementations of machine learning on financial data, also have been of interest. Herein, we employ machine learning algorithms to store sales data and present future applications for fintech enterprises. We utilize diverse missing data processing methods to handle missing data and apply gradient boosting machine learning algorithms; XGBoost, LightGBM, CatBoost to predict the future revenue of individual stores. As a result, we found that using median imputation onto missing data with the appliance of the xgboost algorithm has the best accuracy. By employing the proposed method, fintech enterprises and customers can attain benefits. Stores can benefit by receiving financial assistance beforehand from fintech companies, while these corporations can benefit by offering financial support to these stores with low risk.

A Case Study: Unsupervised Approach for Tourist Profile Analysis by K-means Clustering in Turkey

  • Yildirim, Mustafa Eren;Kaya, Murat;FurkanInce, Ibrahim
    • Journal of Internet Computing and Services
    • /
    • v.23 no.1
    • /
    • pp.11-17
    • /
    • 2022
  • Data mining is the task of accessing useful information from a large capacity of data. It can also be referred to as searching for correlations that can provide clues about the future in large data warehouses by using computer algorithms. It has been used in the tourism field for marketing, analysis, and business improvement purposes. This study aims to analyze the tourist profile in Turkey through data mining methods. The reason relies behind the selection of Turkey is the fact that Turkey welcomes millions of tourist every year which can be a role model for other touristic countries. In this study, an anonymous and large-scale data set was used under the law on the protection of personal data. The dataset was taken from a leading tourism company that is still active in Turkey. By using the k-means clustering algorithm on this data, key parameters of profiles were obtained and people were clustered into groups according to their characteristics. According to the outcomes, distinguishing characteristics are gathered under three main titles. These are the age of the tourists, the frequency of their vacations and the period between the reservation and the vacation itself. The results obtained show that the frequency of tourist vacations, the time between bookings and vacations, and age are the most important and characteristic parameters for a tourist's profile. Finally, planning future investments, events and campaign packages can make tourism companies more competitive and improve quality of service. For both businesses and tourists, it is advantageous to prepare individual events and offers for the three major groups of tourists.

Analysis of the Valuation Model for the state-of-the-art ICT Technology (첨단 ICT 기술에 대한 가치평가 모델 분석)

  • Oh, Sun-Jin
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.705-710
    • /
    • 2021
  • Nowadays, cutting-edge information communication technology is the genuine core technology of the fourth Industrial Revolution and is still making great progress rapidly among various technology fields. The biggest issue in ICT fields is the machine learning based Artificial Intelligence applications using big data in cloud computing environment on the basis of wireless network, and also the technology fields of autonomous control applications such as Autonomous Car or Mobile Robot. Since value of the high-tech ICT technology depends on the surrounded environmental factors and is very flexible, the precise technology valuation method is urgently needed in order to get successful technology transfer, transaction and commercialization. In this research, we analyze the characteristics of the high-tech ICT technology and the main factors in technology transfer or commercialization process, and propose the precise technology valuation method that reflects the characteristics of the ICT technology through phased analysis of the existing technology valuationmodel.

Adaptive Control Scheme of Air Tanker Ground Waiting Time Based on a Multi-Server Queuing Model (다중서버 큐잉 모델을 이용한 공중급유기 지상 대기시간 적응적 제어 기법)

  • Sohn, Yong-Sik;Chung, Jong-Moon
    • Journal of Internet Computing and Services
    • /
    • v.23 no.5
    • /
    • pp.33-46
    • /
    • 2022
  • This paper, in order to minimize the ground waiting time of an Air tanker, the queuing theory, that is, a queue that calculates the waiting time under single-server and multi-server situations, was used in the study. Since the national budget and resources are limited, the unlimited increase of the logistics support service team is limited. Therefore, the number of logistic support service teams that can adaptively control the ground waiting time according to the wartime preparation stage or war environment was calculated. The results of this study provide a stipulated standard for calculating the optimal number of air tanker logistic support service teams of the Air Force, providing a basis for the logistical commander to assign logistic support service teams to each stage from peacetime to wartime.

Calculating the collapse margin ratio of RC frames using soft computing models

  • Sadeghpour, Ali;Ozay, Giray
    • Structural Engineering and Mechanics
    • /
    • v.83 no.3
    • /
    • pp.327-340
    • /
    • 2022
  • The Collapse Margin Ratio (CMR) is a notable index used for seismic assessment of the structures. As proposed by FEMA P695, a set of analyses including the Nonlinear Static Analysis (NSA), Incremental Dynamic Analysis (IDA), together with Fragility Analysis, which are typically time-taking and computationally unaffordable, need to be conducted, so that the CMR could be obtained. To address this issue and to achieve a quick and efficient method to estimate the CMR, the Artificial Neural Network (ANN), Response Surface Method (RSM), and Adaptive Neuro-Fuzzy Inference System (ANFIS) will be introduced in the current research. Accordingly, using the NSA results, an attempt was made to find a fast and efficient approach to derive the CMR. To this end, 5016 IDA analyses based on FEMA P695 methodology on 114 various Reinforced Concrete (RC) frames with 1 to 12 stories have been carried out. In this respect, five parameters have been used as the independent and desired inputs of the systems. On the other hand, the CMR is regarded as the output of the systems. Accordingly, a double hidden layer neural network with Levenberg-Marquardt training and learning algorithm was taken into account. Moreover, in the RSM approach, the quadratic system incorporating 20 parameters was implemented. Correspondingly, the Analysis of Variance (ANOVA) has been employed to discuss the results taken from the developed model. Additionally, the essential parameters and interactions are extracted, and input parameters are sorted according to their importance. Moreover, the ANFIS using Takagi-Sugeno fuzzy system was employed. Finally, all methods were compared, and the effective parameters and associated relationships were extracted. In contrast to the other approaches, the ANFIS provided the best efficiency and high accuracy with the minimum desired errors. Comparatively, it was obtained that the ANN method is more effective than the RSM and has a higher regression coefficient and lower statistical errors.

A general-purpose model capable of image captioning in Korean and Englishand a method to generate text suitable for the purpose (한국어 및 영어 이미지 캡션이 가능한 범용적 모델 및 목적에 맞는 텍스트를 생성해주는 기법)

  • Cho, Su Hyun;Oh, Hayoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.8
    • /
    • pp.1111-1120
    • /
    • 2022
  • Image Capturing is a matter of viewing images and describing images in language. The problem is an important problem that can be solved by keeping, understanding, and bringing together two areas of image processing and natural language processing. In addition, by automatically recognizing and describing images in text, images can be converted into text and then into speech for visually impaired people to help them understand their surroundings, and important issues such as image search, art therapy, sports commentary, and real-time traffic information commentary. So far, the image captioning research approach focuses solely on recognizing and texturing images. However, various environments in reality must be considered for practical use, as well as being able to provide image descriptions for the intended purpose. In this work, we limit the universally available Korean and English image captioning models and text generation techniques for the purpose of image captioning.

Predicting the Future Price of Export Items in Trade Using a Deep Regression Model (딥러닝 기반 무역 수출 가격 예측 모델)

  • Kim, Ji Hun;Lee, Jee Hang
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.10
    • /
    • pp.427-436
    • /
    • 2022
  • Korea Trade-Investment Promotion Agency (KOTRA) annually publishes the trade data in South Korea under the guidance of the Ministry of Trade, Industry and Energy in South Korea. The trade data usually contains Gross domestic product (GDP), a custom tariff, business score, and the price of export items in previous and this year, with regards to the trading items and the countries. However, it is challenging to figure out the meaningful insight so as to predict the future price on trading items every year due to the significantly large amount of data accumulated over the several years under the limited human/computing resources. Within this context, this paper proposes a multi layer perception that can predict the future price of potential trading items in the next year by training large amounts of past year's data with a low computational and human cost.